我需要创建一个长度为n的NumPy数组,其中每个元素都是v。

还有什么比:

a = empty(n)
for i in range(n):
    a[i] = v

我知道0和1适用于v = 0,1。我可以用v * ones(n),但当v为None时行不通,也会慢得多。


当前回答

NumPy 1.8引入了np.full(),这是一个比empty()和fill()更直接的方法,用于创建一个充满特定值的数组:

>>> np.full((3, 5), 7)
array([[ 7.,  7.,  7.,  7.,  7.],
       [ 7.,  7.,  7.,  7.,  7.],
       [ 7.,  7.,  7.,  7.,  7.]])

>>> np.full((3, 5), 7, dtype=int)
array([[7, 7, 7, 7, 7],
       [7, 7, 7, 7, 7],
       [7, 7, 7, 7, 7]])

这可以说是创建一个充满特定值的数组的方法,因为它显式地描述了要实现的内容(原则上它可以非常有效,因为它执行非常特定的任务)。

其他回答

没有numpy

>>>[2]*3
[2, 2, 2]

NumPy 1.8引入了np.full(),这是一个比empty()和fill()更直接的方法,用于创建一个充满特定值的数组:

>>> np.full((3, 5), 7)
array([[ 7.,  7.,  7.,  7.,  7.],
       [ 7.,  7.,  7.,  7.,  7.],
       [ 7.,  7.,  7.,  7.,  7.]])

>>> np.full((3, 5), 7, dtype=int)
array([[7, 7, 7, 7, 7],
       [7, 7, 7, 7, 7],
       [7, 7, 7, 7, 7]])

这可以说是创建一个充满特定值的数组的方法,因为它显式地描述了要实现的内容(原则上它可以非常有效,因为它执行非常特定的任务)。

显然,不仅绝对速度,而且速度顺序(如user1579844所报告的)都与机器有关;以下是我的发现:

一个= np.empty (1 e4);A.fill(5)是最快的;

按速度递减排列:

timeit a=np.empty(1e4); a.fill(5) 
# 100000 loops, best of 3: 10.2 us per loop
timeit a=np.empty(1e4); a[:]=5
# 100000 loops, best of 3: 16.9 us per loop
timeit a=np.ones(1e4)*5
# 100000 loops, best of 3: 32.2 us per loop
timeit a=np.tile(5,[1e4])
# 10000 loops, best of 3: 90.9 us per loop
timeit a=np.repeat(5,(1e4))
# 10000 loops, best of 3: 98.3 us per loop
timeit a=np.array([5]*int(1e4))
# 1000 loops, best of 3: 1.69 ms per loop (slowest BY FAR!)

所以,试着找出答案,并使用你平台上最快的方法。

我有np。数组(n * [value]),但显然,对于足够大的n,这比所有其他建议都要慢。就可读性和速度而言,最好的是

np.full(n, 3.14)

这里是与perfplot(我的一个宠物项目)的完整比较。

两个空的替代品仍然是最快的(NumPy 1.12.1)。完全赶上大数组。


代码生成的情节:

import numpy as np
import perfplot


def empty_fill(n):
    a = np.empty(n)
    a.fill(3.14)
    return a


def empty_colon(n):
    a = np.empty(n)
    a[:] = 3.14
    return a


def ones_times(n):
    return 3.14 * np.ones(n)


def repeat(n):
    return np.repeat(3.14, (n))


def tile(n):
    return np.repeat(3.14, [n])


def full(n):
    return np.full((n), 3.14)


def list_to_array(n):
    return np.array(n * [3.14])


perfplot.show(
    setup=lambda n: n,
    kernels=[empty_fill, empty_colon, ones_times, repeat, tile, full, list_to_array],
    n_range=[2 ** k for k in range(27)],
    xlabel="len(a)",
    logx=True,
    logy=True,
)

我们也可以写成

v=7
n=5
a=np.linspace(v,v,n)