我正在寻找某种公式或算法来确定给定RGB值的颜色的亮度。我知道这不像把RGB值加在一起那么简单,更高的总和更亮,但我有点不知所措,不知道从哪里开始。


当前回答

正如@Nils Pipenbrinck所提到的:

所有这些方程在实践中都很有效,但如果你需要非常精确,你就必须[做一些额外的gamma东西]。在深灰色中,忽略伽玛和正确伽玛之间的亮度差异高达20%。

这里有一个完全自包含的JavaScript函数,它做了“额外的”工作来获得额外的准确性。它基于Jive Dadson对这个问题的c++回答。

// Returns greyscale "brightness" (0-1) of the given 0-255 RGB values
// Based on this C++ implementation: https://stackoverflow.com/a/13558570/11950764
function rgbBrightness(r, g, b) {
  let v = 0;
  v += 0.212655 * ((r/255) <= 0.04045 ? (r/255)/12.92 : Math.pow(((r/255)+0.055)/1.055, 2.4));
  v += 0.715158 * ((g/255) <= 0.04045 ? (g/255)/12.92 : Math.pow(((g/255)+0.055)/1.055, 2.4));
  v += 0.072187 * ((b/255) <= 0.04045 ? (b/255)/12.92 : Math.pow(((b/255)+0.055)/1.055, 2.4));
  return v <= 0.0031308 ? v*12.92 : 1.055 * Math.pow(v,1.0/2.4) - 0.055;
}

请参阅Myndex的答案以获得更准确的计算。

其他回答

下面是将sRGB图像转换为灰度的唯一正确算法,如在浏览器等中使用。

在计算内积之前,有必要对颜色空间应用伽玛函数的逆。然后你把函数应用到减少的值上。未能合并gamma函数可能导致高达20%的误差。

对于典型的计算机,颜色空间是sRGB。sRGB的正确数字约为。0.21 0.72 0.07。sRGB的Gamma是一个复合函数,近似取幂1/(2.2)。这是c++的全部内容。

// sRGB luminance(Y) values
const double rY = 0.212655;
const double gY = 0.715158;
const double bY = 0.072187;

// Inverse of sRGB "gamma" function. (approx 2.2)
double inv_gam_sRGB(int ic) {
    double c = ic/255.0;
    if ( c <= 0.04045 )
        return c/12.92;
    else 
        return pow(((c+0.055)/(1.055)),2.4);
}

// sRGB "gamma" function (approx 2.2)
int gam_sRGB(double v) {
    if(v<=0.0031308)
      v *= 12.92;
    else 
      v = 1.055*pow(v,1.0/2.4)-0.055;
    return int(v*255+0.5); // This is correct in C++. Other languages may not
                           // require +0.5
}

// GRAY VALUE ("brightness")
int gray(int r, int g, int b) {
    return gam_sRGB(
            rY*inv_gam_sRGB(r) +
            gY*inv_gam_sRGB(g) +
            bY*inv_gam_sRGB(b)
    );
}

把这看作是对Myndex的精彩回答的补充。正如他(和其他人)解释的那样,计算RGB颜色的相对亮度(和感知亮度)的算法是设计用于线性RGB值的。你不能只是将它们应用到原始sRGB值上,并希望得到相同的结果。

理论上,这一切听起来都很棒,但我真的需要亲眼看看证据,所以,受到彼得·赫塔克(Petr Hurtak)的颜色渐变的启发,我自己做了一个。它们说明了两种最常见的算法(ITU-R建议BT.601和BT.709),并清楚地说明了为什么应该使用线性值(而不是伽玛校正值)进行计算。

首先,下面是旧的ITU BT.601算法的结果。左边的使用原始sRGB值。右边的使用线性值。

ITU-R BT.601颜色亮度梯度

0.299 r + 0.587 g + 0.114 b

在这个分辨率下,左边的照片实际上看起来非常好!但如果你仔细观察,你会发现一些问题。在更高的分辨率下,不需要的人工制品更加明显:

线性的不受这些影响,但是有很多干扰。让我们将其与ITU-R建议BT.709进行比较……

ITU-R BT.709颜色亮度梯度

0.2126 r + 0.7152 g + 0.0722 b

哦男孩。显然不打算与原始sRGB值一起使用!然而,这正是大多数人所做的!

在高分辨率下,你可以真正看到这个算法在使用线性值时是多么有效。它没有之前那个那么多噪音。虽然这些算法都不是完美的,但这个算法已经是最好的了。

今天我用javascript解决了一个类似的任务。 我已经确定了这个getPerceivedLightness(rgb)函数的HEX rgb颜色。 利用Fairchild和Perrotta公式对Helmholtz-Kohlrausch效应进行了亮度校正。

/**
 * Converts RGB color to CIE 1931 XYZ color space.
 * https://www.image-engineering.de/library/technotes/958-how-to-convert-between-srgb-and-ciexyz
 * @param  {string} hex
 * @return {number[]}
 */
export function rgbToXyz(hex) {
    const [r, g, b] = hexToRgb(hex).map(_ => _ / 255).map(sRGBtoLinearRGB)
    const X =  0.4124 * r + 0.3576 * g + 0.1805 * b
    const Y =  0.2126 * r + 0.7152 * g + 0.0722 * b
    const Z =  0.0193 * r + 0.1192 * g + 0.9505 * b
    // For some reason, X, Y and Z are multiplied by 100.
    return [X, Y, Z].map(_ => _ * 100)
}

/**
 * Undoes gamma-correction from an RGB-encoded color.
 * https://en.wikipedia.org/wiki/SRGB#Specification_of_the_transformation
 * https://stackoverflow.com/questions/596216/formula-to-determine-brightness-of-rgb-color
 * @param  {number}
 * @return {number}
 */
function sRGBtoLinearRGB(color) {
    // Send this function a decimal sRGB gamma encoded color value
    // between 0.0 and 1.0, and it returns a linearized value.
    if (color <= 0.04045) {
        return color / 12.92
    } else {
        return Math.pow((color + 0.055) / 1.055, 2.4)
    }
}

/**
 * Converts hex color to RGB.
 * https://stackoverflow.com/questions/5623838/rgb-to-hex-and-hex-to-rgb
 * @param  {string} hex
 * @return {number[]} [rgb]
 */
function hexToRgb(hex) {
    const match = /^#?([a-f\d]{2})([a-f\d]{2})([a-f\d]{2})$/i.exec(hex)
    if (match) {
        match.shift()
        return match.map(_ => parseInt(_, 16))
    }
}

/**
 * Converts CIE 1931 XYZ colors to CIE L*a*b*.
 * The conversion formula comes from <http://www.easyrgb.com/en/math.php>.
 * https://github.com/cangoektas/xyz-to-lab/blob/master/src/index.js
 * @param   {number[]} color The CIE 1931 XYZ color to convert which refers to
 *                           the D65/2° standard illuminant.
 * @returns {number[]}       The color in the CIE L*a*b* color space.
 */
// X, Y, Z of a "D65" light source.
// "D65" is a standard 6500K Daylight light source.
// https://en.wikipedia.org/wiki/Illuminant_D65
const D65 = [95.047, 100, 108.883]
export function xyzToLab([x, y, z]) {
  [x, y, z] = [x, y, z].map((v, i) => {
    v = v / D65[i]
    return v > 0.008856 ? Math.pow(v, 1 / 3) : v * 7.787 + 16 / 116
  })
  const l = 116 * y - 16
  const a = 500 * (x - y)
  const b = 200 * (y - z)
  return [l, a, b]
}

/**
 * Converts Lab color space to Luminance-Chroma-Hue color space.
 * http://www.brucelindbloom.com/index.html?Eqn_Lab_to_LCH.html
 * @param  {number[]}
 * @return {number[]}
 */
export function labToLch([l, a, b]) {
    const c = Math.sqrt(a * a + b * b)
    const h = abToHue(a, b)
    return [l, c, h]
}

/**
 * Converts a and b of Lab color space to Hue of LCH color space.
 * https://stackoverflow.com/questions/53733379/conversion-of-cielab-to-cielchab-not-yielding-correct-result
 * @param  {number} a
 * @param  {number} b
 * @return {number}
 */
function abToHue(a, b) {
    if (a >= 0 && b === 0) {
        return 0
    }
    if (a < 0 && b === 0) {
        return 180
    }
    if (a === 0 && b > 0) {
        return 90
    }
    if (a === 0 && b < 0) {
        return 270
    }
    let xBias
    if (a > 0 && b > 0) {
        xBias = 0
    } else if (a < 0) {
        xBias = 180
    } else if (a > 0 && b < 0) {
        xBias = 360
    }
    return radiansToDegrees(Math.atan(b / a)) + xBias
}

function radiansToDegrees(radians) {
    return radians * (180 / Math.PI)
}

function degreesToRadians(degrees) {
    return degrees * Math.PI / 180
}

/**
 * Saturated colors appear brighter to human eye.
 * That's called Helmholtz-Kohlrausch effect.
 * Fairchild and Pirrotta came up with a formula to
 * calculate a correction for that effect.
 * "Color Quality of Semiconductor and Conventional Light Sources":
 * https://books.google.ru/books?id=ptDJDQAAQBAJ&pg=PA45&lpg=PA45&dq=fairchild+pirrotta+correction&source=bl&ots=7gXR2MGJs7&sig=ACfU3U3uIHo0ZUdZB_Cz9F9NldKzBix0oQ&hl=ru&sa=X&ved=2ahUKEwi47LGivOvmAhUHEpoKHU_ICkIQ6AEwAXoECAkQAQ#v=onepage&q=fairchild%20pirrotta%20correction&f=false
 * @return {number}
 */
function getLightnessUsingFairchildPirrottaCorrection([l, c, h]) {
    const l_ = 2.5 - 0.025 * l
    const g = 0.116 * Math.abs(Math.sin(degreesToRadians((h - 90) / 2))) + 0.085
    return l + l_ * g * c
}

export function getPerceivedLightness(hex) {
    return getLightnessUsingFairchildPirrottaCorrection(labToLch(xyzToLab(rgbToXyz(hex))))
}

请定义亮度。如果你想知道颜色有多接近白色你可以用欧几里得距离(255,255,255)

我认为你正在寻找的是RGB ->流光转换公式。

光度/数字ITU BT.709:

Y = 0.2126 R + 0.7152 G + 0.0722 B

数字ITU BT.601(给予R和B部分更多权重):

Y = 0.299 R + 0.587 G + 0.114 B

如果你愿意用准确性来换取性能,有两个近似公式:

Y = 0.33 R + 0.5 G + 0.16 B

Y = 0.375 R + 0.5 G + 0.125 B

这些可以快速计算为

Y = (R+R+B+G+G+G)/6

Y = (R+R+R+B+G+G+G+G)>>3