我正在寻找某种公式或算法来确定给定RGB值的颜色的亮度。我知道这不像把RGB值加在一起那么简单,更高的总和更亮,但我有点不知所措,不知道从哪里开始。
当前回答
正如@Nils Pipenbrinck所提到的:
所有这些方程在实践中都很有效,但如果你需要非常精确,你就必须[做一些额外的gamma东西]。在深灰色中,忽略伽玛和正确伽玛之间的亮度差异高达20%。
这里有一个完全自包含的JavaScript函数,它做了“额外的”工作来获得额外的准确性。它基于Jive Dadson对这个问题的c++回答。
// Returns greyscale "brightness" (0-1) of the given 0-255 RGB values
// Based on this C++ implementation: https://stackoverflow.com/a/13558570/11950764
function rgbBrightness(r, g, b) {
let v = 0;
v += 0.212655 * ((r/255) <= 0.04045 ? (r/255)/12.92 : Math.pow(((r/255)+0.055)/1.055, 2.4));
v += 0.715158 * ((g/255) <= 0.04045 ? (g/255)/12.92 : Math.pow(((g/255)+0.055)/1.055, 2.4));
v += 0.072187 * ((b/255) <= 0.04045 ? (b/255)/12.92 : Math.pow(((b/255)+0.055)/1.055, 2.4));
return v <= 0.0031308 ? v*12.92 : 1.055 * Math.pow(v,1.0/2.4) - 0.055;
}
请参阅Myndex的答案以获得更准确的计算。
其他回答
HSV色彩空间应该做的把戏,看维基百科文章取决于你正在工作的语言,你可能会得到一个库转换。
H是色调,是颜色的数值(即红色,绿色…)
S是颜色的饱和度,即它有多“强烈”
V是颜色的亮度。
为了用R确定颜色的亮度,我将RGB系统颜色转换为HSV系统颜色。
在我的脚本中,我之前因为其他原因使用了HEX系统代码,但你也可以从rgb2hsv {grDevices}的RGB系统代码开始。文档在这里。
这是我的代码的这一部分:
sample <- c("#010101", "#303030", "#A6A4A4", "#020202", "#010100")
hsvc <-rgb2hsv(col2rgb(sample)) # convert HEX to HSV
value <- as.data.frame(hsvc) # create data.frame
value <- value[3,] # extract the information of brightness
order(value) # ordrer the color by brightness
请定义亮度。如果你想知道颜色有多接近白色你可以用欧几里得距离(255,255,255)
再加上其他人说的话:
所有这些方程在实践中都工作得很好,但如果你需要非常精确,你必须首先将颜色转换为线性颜色空间(应用逆图像-gamma),对原色进行权重平均,如果你想显示颜色- 把亮度调回监控器伽马。
在深灰色中,忽略伽玛和正确伽玛之间的亮度差异高达20%。
“接受”的答案是不正确和不完整的
唯一准确的答案是@ ji- dadson和@EddingtonsMonkey的答案,并支持@ niles -pipenbrinck。其他答案(包括已接受的答案)链接到或引用了错误的、不相关的、过时的或坏的来源。
简要:
sRGB必须在应用系数之前线性化。 亮度(L或Y)与光一样是线性的。 感知亮度(L*)与人类感知一样是非线性的。 HSV和HSL在感知方面甚至远不准确。 sRGB的IEC标准指定阈值为0.04045,而不是0.03928(这是来自过时的早期草案)。 为了有用(即相对于感知),欧几里得距离需要一个感知一致的笛卡尔向量空间,如CIELAB。sRGB不是其中之一。
以下是正确而完整的回答:
由于这条线索在搜索引擎中出现频率很高,我添加了这个答案来澄清关于这个主题的各种误解。
亮度是光的线性测量,对正常视力进行光谱加权,但对亮度的非线性感知不进行调整。它可以是相对度量,如CIEXYZ中的Y,或L, cd/m2的绝对度量(不要与L*混淆)。
一些视觉模型如CIELAB使用感知明度,这里L* (Lstar)为感知明度值,且为非线性,以近似人类视觉非线性响应曲线。(也就是说,对知觉是线性的,但因此对光是非线性的)。
亮度是一种感知属性,它不具有“物理”度量。然而,一些颜色外观模型确实有一个值,通常用“Q”表示感知亮度,这与感知亮度不同。
Luma (Y´')是一种伽玛编码的加权信号,用于某些视频编码(Y´I´Q´)。不要与线性亮度混淆。
Gamma或传递曲线(TRC)是一种通常与感知曲线相似的曲线,通常用于存储或广播图像数据,以减少感知噪声和/或提高数据利用率(以及相关原因)。
为了确定感知亮度,首先将gamma编码的R´G´B´图像值转换为线性亮度(L或Y),然后转换为非线性感知亮度(L*)
寻找亮度:
...因为很明显它在某个地方丢失了……
第一步:
将所有sRGB 8位整数值转换为十进制0.0-1.0
vR = sR / 255;
vG = sG / 255;
vB = sB / 255;
第二步:
将gamma编码的RGB转换为线性值。例如,sRGB(计算机标准)要求功率曲线约为V^2.2,尽管“准确的”变换是:
其中V´为sRGB的伽玛编码R、G或B通道。 伪代码:
function sRGBtoLin(colorChannel) {
// Send this function a decimal sRGB gamma encoded color value
// between 0.0 and 1.0, and it returns a linearized value.
if ( colorChannel <= 0.04045 ) {
return colorChannel / 12.92;
} else {
return pow((( colorChannel + 0.055)/1.055),2.4);
}
}
第三步:
要找到亮度(Y),应用sRGB的标准系数:
使用上述函数的伪代码:
Y = (0.2126 * sRGBtoLin(vR) + 0.7152 * sRGBtoLin(vG) + 0.0722 * sRGBtoLin(vB))
找到可感知的轻盈:
步骤四:
从上面取亮度Y,变换为L*
伪代码:
function YtoLstar(Y) {
// Send this function a luminance value between 0.0 and 1.0,
// and it returns L* which is "perceptual lightness"
if ( Y <= (216/24389)) { // The CIE standard states 0.008856 but 216/24389 is the intent for 0.008856451679036
return Y * (24389/27); // The CIE standard states 903.3, but 24389/27 is the intent, making 903.296296296296296
} else {
return pow(Y,(1/3)) * 116 - 16;
}
}
L*是一个从0(黑色)到100(白色)的值,其中50是感知的“中间灰色”。L* = 50相当于Y = 18.4,换句话说,一张18%的灰卡,代表一张照片曝光的中间(安塞尔·亚当斯V区)。
引用:
IEC 61966-2-1:1999标准 维基百科sRGB 维基百科CIELAB 维基百科CIEXYZ Charles Poynton的Gamma常见问题解答
推荐文章
- 禁用从HTML页面中拖动图像
- HSL到RGB的颜色转换
- 如何自动生成N“不同”的颜色?
- 在c#中从项目资源区域加载图像
- 如何拉伸图像以填充<div>,同时保持图像的纵横比?
- 如何用CSS“裁剪”一个矩形图像成一个正方形?
- 从matplotlib中的颜色映射中获取单个颜色
- 更改UITextField和UITextView光标/插入符颜色
- 设置Matplotlib色条大小以匹配图形
- Matplotlib:如何在图像上绘制矩形
- 用jQuery检查图像是否加载(无错误)
- 是否可以在。net中以彩色方式写入控制台?
- 用标志图像替换H1文本:SEO和可访问性的最佳方法?
- 如何在CSS中定义颜色作为变量?
- CSS十六进制RGBA?