如何从numpy数组中删除一些特定的元素?说我有
import numpy as np
a = np.array([1,2,3,4,5,6,7,8,9])
然后我想从a中删除3,4,7。我所知道的是这些值的下标(index=[2,3,6])。
如何从numpy数组中删除一些特定的元素?说我有
import numpy as np
a = np.array([1,2,3,4,5,6,7,8,9])
然后我想从a中删除3,4,7。我所知道的是这些值的下标(index=[2,3,6])。
当前回答
如果不知道索引,就不能使用logical_and
x = 10*np.random.randn(1,100)
low = 5
high = 27
x[0,np.logical_and(x[0,:]>low,x[0,:]<high)]
其他回答
有一个numpy内置函数可以帮助实现这一点。
import numpy as np
>>> a = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9])
>>> b = np.array([3,4,7])
>>> c = np.setdiff1d(a,b)
>>> c
array([1, 2, 5, 6, 8, 9])
使用numpy.delete() -返回一个新数组,其子数组沿已删除的轴
numpy.delete(a, index)
关于你的具体问题:
import numpy as np
a = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9])
index = [2, 3, 6]
new_a = np.delete(a, index)
print(new_a) #Prints `[1, 2, 5, 6, 8, 9]`
注意,numpy.delete()返回一个新数组,因为数组标量是不可变的,类似于Python中的字符串,所以每次对它进行更改时,都会创建一个新对象。也就是说,引用delete()文档:
"删除了由obj指定的元素的arr副本。请注意, 删除不会发生在原地……”
如果我发布的代码有输出,它是运行代码的结果。
如果没有想要删除的元素的索引,可以使用numpy提供的in1d函数。
如果一个一维数组的元素也存在于另一个数组中,则该函数返回True。要删除元素,只需对该函数返回的值求负即可。
注意,这个方法保持原始数组的顺序。
In [1]: import numpy as np
a = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9])
rm = np.array([3, 4, 7])
# np.in1d return true if the element of `a` is in `rm`
idx = np.in1d(a, rm)
idx
Out[1]: array([False, False, True, True, False, False, True, False, False])
In [2]: # Since we want the opposite of what `in1d` gives us,
# you just have to negate the returned value
a[~idx]
Out[2]: array([1, 2, 5, 6, 8, 9])
如果我们知道要删除的元素的索引,使用np.delete是最快的方法。但是,为了完整起见,让我添加另一种“删除”数组元素的方法,使用在np.isin的帮助下创建的布尔掩码。该方法允许我们通过直接指定或通过索引来删除元素:
import numpy as np
a = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9])
按指数移除:
indices_to_remove = [2, 3, 6]
a = a[~np.isin(np.arange(a.size), indices_to_remove)]
按元素删除(不要忘记重新创建原来的a,因为它在前一行中被重写了):
elements_to_remove = a[indices_to_remove] # [3, 4, 7]
a = a[~np.isin(a, elements_to_remove)]
删除特定索引(我从矩阵中删除了16和21)
import numpy as np
mat = np.arange(12,26)
a = [4,9]
del_map = np.delete(mat, a)
del_map.reshape(3,4)
输出:
array([[12, 13, 14, 15],
[17, 18, 19, 20],
[22, 23, 24, 25]])