如何从numpy数组中删除一些特定的元素?说我有

import numpy as np

a = np.array([1,2,3,4,5,6,7,8,9])

然后我想从a中删除3,4,7。我所知道的是这些值的下标(index=[2,3,6])。


当前回答

按值删除:

modified_array = np.delete(original_array, np.where(original_array == value_to_delete))

其他回答

我不是一个麻木的人,我试了一下:

>>> import numpy as np
>>> import itertools
>>> 
>>> a = np.array([1,2,3,4,5,6,7,8,9])
>>> index=[2,3,6]
>>> a = np.array(list(itertools.compress(a, [i not in index for i in range(len(a))])))
>>> a
array([1, 2, 5, 6, 8, 9])

根据我的测试,这优于numpy.delete()。我不知道为什么会这样,也许是因为初始数组的大小较小?

python -m timeit -s "import numpy as np" -s "import itertools" -s "a = np.array([1,2,3,4,5,6,7,8,9])" -s "index=[2,3,6]" "a = np.array(list(itertools.compress(a, [i not in index for i in range(len(a))])))"
100000 loops, best of 3: 12.9 usec per loop

python -m timeit -s "import numpy as np" -s "a = np.array([1,2,3,4,5,6,7,8,9])" -s "index=[2,3,6]" "np.delete(a, index)"
10000 loops, best of 3: 108 usec per loop

这是一个相当显著的差异(与我预期的方向相反),有人知道为什么会这样吗?

更奇怪的是,传递numpy.delete()一个列表的性能比遍历列表并给它单个索引的性能更差。

python -m timeit -s "import numpy as np" -s "a = np.array([1,2,3,4,5,6,7,8,9])" -s "index=[2,3,6]" "for i in index:" "    np.delete(a, i)"
10000 loops, best of 3: 33.8 usec per loop

编辑:这似乎与数组的大小有关。对于大型数组,numpy.delete()要快得多。

python -m timeit -s "import numpy as np" -s "import itertools" -s "a = np.array(list(range(10000)))" -s "index=[i for i in range(10000) if i % 2 == 0]" "a = np.array(list(itertools.compress(a, [i not in index for i in range(len(a))])))"
10 loops, best of 3: 200 msec per loop

python -m timeit -s "import numpy as np" -s "a = np.array(list(range(10000)))" -s "index=[i for i in range(10000) if i % 2 == 0]" "np.delete(a, index)"
1000 loops, best of 3: 1.68 msec per loop

显然,这一切都是相当无关紧要的,因为您应该始终保持清晰,避免重复工作,但我发现它有点有趣,所以我想我就把它留在这里。

使用numpy.delete() -返回一个新数组,其子数组沿已删除的轴

numpy.delete(a, index)

关于你的具体问题:

import numpy as np

a = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9])
index = [2, 3, 6]

new_a = np.delete(a, index)

print(new_a) #Prints `[1, 2, 5, 6, 8, 9]`

注意,numpy.delete()返回一个新数组,因为数组标量是不可变的,类似于Python中的字符串,所以每次对它进行更改时,都会创建一个新对象。也就是说,引用delete()文档:

"删除了由obj指定的元素的arr副本。请注意, 删除不会发生在原地……”

如果我发布的代码有输出,它是运行代码的结果。

按值删除:

modified_array = np.delete(original_array, np.where(original_array == value_to_delete))

有一个numpy内置函数可以帮助实现这一点。

import numpy as np
>>> a = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9])
>>> b = np.array([3,4,7])
>>> c = np.setdiff1d(a,b)
>>> c
array([1, 2, 5, 6, 8, 9])

删除特定索引(我从矩阵中删除了16和21)

import numpy as np
mat = np.arange(12,26)
a = [4,9]
del_map = np.delete(mat, a)
del_map.reshape(3,4)

输出:

array([[12, 13, 14, 15],
      [17, 18, 19, 20],
      [22, 23, 24, 25]])