如何从numpy数组中删除一些特定的元素?说我有

import numpy as np

a = np.array([1,2,3,4,5,6,7,8,9])

然后我想从a中删除3,4,7。我所知道的是这些值的下标(index=[2,3,6])。


当前回答

你也可以使用集合:

a = numpy.array([10, 20, 30, 40, 50, 60, 70, 80, 90])
the_index_list = [2, 3, 6]

the_big_set = set(numpy.arange(len(a)))
the_small_set = set(the_index_list)
the_delta_row_list = list(the_big_set - the_small_set)

a = a[the_delta_row_list]

其他回答

有一个numpy内置函数可以帮助实现这一点。

import numpy as np
>>> a = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9])
>>> b = np.array([3,4,7])
>>> c = np.setdiff1d(a,b)
>>> c
array([1, 2, 5, 6, 8, 9])

如果没有想要删除的元素的索引,可以使用numpy提供的in1d函数。

如果一个一维数组的元素也存在于另一个数组中,则该函数返回True。要删除元素,只需对该函数返回的值求负即可。

注意,这个方法保持原始数组的顺序。

In [1]: import numpy as np

        a = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9])
        rm = np.array([3, 4, 7])
        # np.in1d return true if the element of `a` is in `rm`
        idx = np.in1d(a, rm)
        idx

Out[1]: array([False, False,  True,  True, False, False,  True, False, False])

In [2]: # Since we want the opposite of what `in1d` gives us, 
        # you just have to negate the returned value
        a[~idx]

Out[2]: array([1, 2, 5, 6, 8, 9])

列表理解也是一种有趣的方法。

a = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9])
index = np.array([2, 3, 6]) #index is changed to an array.  
out = [val for i, val in enumerate(a) if all(i != index)]
>>> [1, 2, 5, 6, 8, 9]

使用numpy.delete() -返回一个新数组,其子数组沿已删除的轴

numpy.delete(a, index)

关于你的具体问题:

import numpy as np

a = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9])
index = [2, 3, 6]

new_a = np.delete(a, index)

print(new_a) #Prints `[1, 2, 5, 6, 8, 9]`

注意,numpy.delete()返回一个新数组,因为数组标量是不可变的,类似于Python中的字符串,所以每次对它进行更改时,都会创建一个新对象。也就是说,引用delete()文档:

"删除了由obj指定的元素的arr副本。请注意, 删除不会发生在原地……”

如果我发布的代码有输出,它是运行代码的结果。

Numpy数组是不可变的,这意味着从技术上讲不能从其中删除项。然而,你可以构造一个没有你不想要的值的新数组,就像这样:

b = np.delete(a, [2,3,6])