如何从numpy数组中删除一些特定的元素?说我有
import numpy as np
a = np.array([1,2,3,4,5,6,7,8,9])
然后我想从a中删除3,4,7。我所知道的是这些值的下标(index=[2,3,6])。
如何从numpy数组中删除一些特定的元素?说我有
import numpy as np
a = np.array([1,2,3,4,5,6,7,8,9])
然后我想从a中删除3,4,7。我所知道的是这些值的下标(index=[2,3,6])。
当前回答
列表理解也是一种有趣的方法。
a = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9])
index = np.array([2, 3, 6]) #index is changed to an array.
out = [val for i, val in enumerate(a) if all(i != index)]
>>> [1, 2, 5, 6, 8, 9]
其他回答
删除特定索引(我从矩阵中删除了16和21)
import numpy as np
mat = np.arange(12,26)
a = [4,9]
del_map = np.delete(mat, a)
del_map.reshape(3,4)
输出:
array([[12, 13, 14, 15],
[17, 18, 19, 20],
[22, 23, 24, 25]])
Numpy数组是不可变的,这意味着从技术上讲不能从其中删除项。然而,你可以构造一个没有你不想要的值的新数组,就像这样:
b = np.delete(a, [2,3,6])
如果不知道索引,就不能使用logical_and
x = 10*np.random.randn(1,100)
low = 5
high = 27
x[0,np.logical_and(x[0,:]>low,x[0,:]<high)]
按值删除:
modified_array = np.delete(original_array, np.where(original_array == value_to_delete))
如果你不知道指数,你可以这样做:
arr = [1, 2, 3, 4, 5, 6, 7, 8, 9]
values = [3, 4, 7]
mask = np.isin(arr, values)
arr = np.delete(arr, mask)
这个带mask的语法在1.19中引入。