我有一个Python脚本,它把一个整数列表作为输入,我需要一次处理四个整数。不幸的是,我无法控制输入,否则我将它作为一个四元素元组列表传入。目前,我以这种方式迭代它:

for i in range(0, len(ints), 4):
    # dummy op for example code
    foo += ints[i] * ints[i + 1] + ints[i + 2] * ints[i + 3]

不过,它看起来很像“C-think”,这让我怀疑有一种更python的方式来处理这种情况。该列表在迭代后被丢弃,因此不需要保留。也许这样会更好?

while ints:
    foo += ints[0] * ints[1] + ints[2] * ints[3]
    ints[0:4] = []

不过,感觉还是不太对。: - /

相关问题:在Python中如何将列表分割成大小均匀的块?


当前回答

这个答案拆分了一个字符串列表,f.ex。达到符合pep8线长的要求:

def split(what, target_length=79):
    '''splits list of strings into sublists, each 
    having string length at most 79'''
    out = [[]]
    while what:
        if len("', '".join(out[-1])) + len(what[0]) < target_length:
            out[-1].append(what.pop(0))
        else:
            if not out[-1]: # string longer than target_length
                out[-1] = [what.pop(0)]
            out.append([])
    return out

使用

>>> split(['deferred_income', 'long_term_incentive', 'restricted_stock_deferred', 'shared_receipt_with_poi', 'loan_advances', 'from_messages', 'other', 'director_fees', 'bonus', 'total_stock_value', 'from_poi_to_this_person', 'from_this_person_to_poi', 'restricted_stock', 'salary', 'total_payments', 'exercised_stock_options'], 75)
[['deferred_income', 'long_term_incentive', 'restricted_stock_deferred'], ['shared_receipt_with_poi', 'loan_advances', 'from_messages', 'other'], ['director_fees', 'bonus', 'total_stock_value', 'from_poi_to_this_person'], ['from_this_person_to_poi', 'restricted_stock', 'salary', 'total_payments'], ['exercised_stock_options']]

其他回答

我需要一个解决方案,也将工作与集和生成器。我写不出很短很漂亮的东西,但至少可读性很好。

def chunker(seq, size):
    res = []
    for el in seq:
        res.append(el)
        if len(res) == size:
            yield res
            res = []
    if res:
        yield res

列表:

>>> list(chunker([i for i in range(10)], 3))
[[0, 1, 2], [3, 4, 5], [6, 7, 8], [9]]

Set:

>>> list(chunker(set([i for i in range(10)]), 3))
[[0, 1, 2], [3, 4, 5], [6, 7, 8], [9]]

发电机:

>>> list(chunker((i for i in range(10)), 3))
[[0, 1, 2], [3, 4, 5], [6, 7, 8], [9]]

使用小的函数和东西真的不吸引我;我更喜欢使用切片:

data = [...]
chunk_size = 10000 # or whatever
chunks = [data[i:i+chunk_size] for i in xrange(0,len(data),chunk_size)]
for chunk in chunks:
    ...
def group_by(iterable, size):
    """Group an iterable into lists that don't exceed the size given.

    >>> group_by([1,2,3,4,5], 2)
    [[1, 2], [3, 4], [5]]

    """
    sublist = []

    for index, item in enumerate(iterable):
        if index > 0 and index % size == 0:
            yield sublist
            sublist = []

        sublist.append(item)

    if sublist:
        yield sublist
chunk_size = 4
for i in range(0, len(ints), chunk_size):
    chunk = ints[i:i+chunk_size]
    # process chunk of size <= chunk_size

下面是我的go works on lists,iter和range…懒洋洋地:

def chunker(it,size):
    rv = [] 
    for i,el in enumerate(it,1) :   
        rv.append(el)
        if i % size == 0 : 
            yield rv
            rv = []
    if rv : yield rv        

几乎变成了一句俏皮话;(

In [95]: list(chunker(range(9),2) )                                                                                                                                          
Out[95]: [[0, 1], [2, 3], [4, 5], [6, 7], [8]]

In [96]: list(chunker([1,2,3,4,5],2) )                                                                                                                                       
Out[96]: [[1, 2], [3, 4], [5]]

In [97]: list(chunker(iter(range(9)),2) )                                                                                                                                    
Out[97]: [[0, 1], [2, 3], [4, 5], [6, 7], [8]]

In [98]: list(chunker(range(9),25) )                                                                                                                                         
Out[98]: [[0, 1, 2, 3, 4, 5, 6, 7, 8]]

In [99]: list(chunker(range(9),1) )                                                                                                                                          
Out[99]: [[0], [1], [2], [3], [4], [5], [6], [7], [8]]

In [101]: %timeit list(chunker(range(101),2) )                                                                                                                               
11.3 µs ± 68.2 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each)