try语句的可选else子句的预期用途是什么?
当前回答
可以在finally子句中以通用的方式使用此构造来处理异常,而在没有异常时执行其他操作:
class TooManyRetries(RuntimeError):
pass
n_tries = 0
max_retries = 2
while True:
try:
n_tries += 1
if n_tries >= max_retries:
raise TooManyRetries
fail_prone_operation()
except Exception1 as ex:
# handle1
except Exception2 as ex:
# handle2
except Exception3 as ex:
# handle3
except TooManyRetries as ex:
raise
else: # No exception
n_tries = 0
finally:
common_restore_state()
continue
其他回答
我已经找到了…Else:在运行数据库查询并将这些查询的结果记录到相同风格/类型的单独数据库的情况下,构造非常有用。假设我有很多工作线程,它们都处理提交给队列的数据库查询
#in a long running loop
try:
query = queue.get()
conn = connect_to_db(<main db>)
curs = conn.cursor()
try:
curs.execute("<some query on user input that may fail even if sanitized">)
except DBError:
logconn = connect_to_db(<logging db>)
logcurs = logconn.cursor()
logcurs.execute("<update in DB log with record of failed query")
logcurs.close()
logconn.close()
else:
#we can't put this in main try block because an error connecting
#to the logging DB would be indistinguishable from an error in
#the mainquery
#We can't put this after the whole try: except: finally: block
#because then we don't know if the query was successful or not
logconn = connect_to_db(<logging db>)
logcurs = logconn.cursor()
logcurs.execute("<update in DB log with record of successful query")
logcurs.close()
logconn.close()
#do something in response to successful query
except DBError:
#This DBError is because of a problem with the logging database, but
#we can't let that crash the whole thread over what might be a
#temporary network glitch
finally:
curs.close()
conn.close()
#other cleanup if necessary like telling the queue the task is finished
当然,如果您能够区分可能抛出的异常,则不必使用这种方法,但是如果代码对成功的代码段的响应可能会抛出与成功的代码段相同的异常,并且您不能让第二个可能的异常消失,或者在成功时立即返回(在我的例子中,这会杀死线程),那么这种方法就会派上用场。
查看Python引用,当没有异常时,else似乎在try之后执行。 当控制流出try子句的末尾时,执行可选的else子句。else子句中的异常不由前面的except子句处理。
Dive into python有一个例子,如果我理解正确的话,在try块中他们尝试导入一个模块,当失败时,你会得到异常并绑定默认值,但当它工作时,你可以选择进入else块并绑定所需的内容(参见示例和解释链接)。
如果你试图在catch块中工作,它可能会抛出另一个异常——我想这就是else块派上用场的地方。
else块通常可以用来补充出现在每个except块中的功能。
try:
test_consistency(valuable_data)
except Except1:
inconsistency_type = 1
except Except2:
inconsistency_type = 2
except:
# Something else is wrong
raise
else:
inconsistency_type = 0
"""
Process each individual inconsistency down here instead of
inside the except blocks. Use 0 to mean no inconsistency.
"""
在这种情况下,在每个except块中设置inconsistency_type,以便在无错误情况下在else中补充行为。
当然,我将此描述为某一天可能会出现在您自己的代码中的模式。在这个特定的情况下,您只要在try块之前将inconsistency_type设置为0即可。
使用else样式和可读性是一个重要原因。将可能导致异常的代码放在处理异常的代码附近通常是个好主意。例如,比较这些:
try:
from EasyDialogs import AskPassword
# 20 other lines
getpass = AskPassword
except ImportError:
getpass = default_getpass
and
try:
from EasyDialogs import AskPassword
except ImportError:
getpass = default_getpass
else:
# 20 other lines
getpass = AskPassword
当异常不能提前返回或重新抛出异常时,第二个方法很好。如果可能的话,我会这样写:
try:
from EasyDialogs import AskPassword
except ImportError:
getpass = default_getpass
return False # or throw Exception('something more descriptive')
# 20 other lines
getpass = AskPassword
注意:答案从最近发布的副本复制在这里,因此所有这些“AskPassword”的东西。
也许它的用法是:
#debug = []
def debuglog(text, obj=None):
" Simple little logger. "
try:
debug # does global exist?
except NameError:
pass # if not, don't even bother displaying
except:
print('Unknown cause. Debug debuglog().')
else:
# debug does exist.
# Now test if you want to log this debug message
# from caller "obj"
try:
if obj in debug:
print(text) # stdout
except TypeError:
print('The global "debug" flag should be an iterable.')
except:
print('Unknown cause. Debug debuglog().')
def myfunc():
debuglog('Made it to myfunc()', myfunc)
debug = [myfunc,]
myfunc()
也许这对你也有帮助。
推荐文章
- 如何为python模块的argparse部分编写测试?
- 在python中是否有用于均方根误差(RMSE)的库函数?
- 如何从matplotlib (pyplot。Figure vs matplotlib。figure) (frameon=False matplotlib中有问题)
- django test app error -在创建测试数据库时出现错误:创建数据库的权限被拒绝
- 识别使用pip安装的python包的依赖关系
- 从字符串变量导入模块
- 如何删除Python中的前导空白?
- python中的assertEquals和assertEqual
- 如何保持Python打印不添加换行符或空格?
- 为什么Python的无穷散列中有π的数字?
- Python 3.7数据类中的类继承
- 如何在PyTorch中初始化权重?
- 计数唯一的值在一列熊猫数据框架像在Qlik?
- 使用Pandas将列转换为行
- 从matplotlib中的颜色映射中获取单个颜色