我一直在为一个投资组合管理工具开发一个内部网站。有很多文本数据,公司名称等。我对一些搜索引擎的能力印象深刻,它们可以非常快速地回答“你的意思是:xxxx”。

我需要能够智能地接受用户的查询,并不仅响应原始搜索结果,而且还响应“您的意思是?”当有一个极有可能的替代答案等

我正在开发ASP。NET (VB -别跟我过不去!)]

更新: 好吧,在没有数百万“付费用户”的情况下,我该如何模仿这种模式?

为每个“已知”或“正确”的术语生成拼写错误并执行查找? 还有其他更优雅的方法吗?


当前回答

以下是直接来自来源的解释(几乎)

搜索101 !

在分钟 22:03

值得一看!

基本上,根据谷歌前CTO Douglas Merrill的说法,它是这样的:

1)你在谷歌里写了一个(拼错的)单词

2)你找不到你想要的(不要点击任何结果)

3)你意识到你拼错了这个词,所以你在搜索框里重写了这个词。

4)你找到你想要的(你点击第一个链接)

这个模式乘以数百万次,显示了什么是最常见的拼写错误,什么是最“常见”的更正。

这样谷歌几乎可以立即提供每种语言的拼写纠正。

这也意味着如果一夜之间每个人都开始把night拼成“nigth”,谷歌会建议用这个词来代替。

EDIT

道格拉斯将其描述为“统计机器学习”。

他们知道谁更正了查询,因为他们知道哪个查询来自哪个用户(使用cookie)

如果用户执行查询,只有10%的用户点击了结果,而90%的用户返回并输入了另一个查询(带有更正的单词),这一次90%的用户点击了结果,那么他们知道他们已经找到了更正。

它们还可以知道这些是否是两个不同的“相关”查询,因为它们拥有它们所显示的所有链接的信息。

此外,他们现在将上下文纳入拼写检查,因此他们甚至可以根据上下文建议不同的单词。

请看谷歌wave (@ 44m06 s)的演示,它展示了如何考虑上下文来自动纠正拼写。

这里将解释自然语言处理是如何工作的。

最后,这里有一个很棒的演示,可以添加自动机器翻译(@ 1h 12m 47s)到混合。

我已经在视频中添加了分钟和秒的锚,可以直接跳到内容,如果它们不起作用,可以尝试重新加载页面或手动滚动到标记处。

其他回答

嗯…我认为谷歌使用他们庞大的数据语料库(互联网)来做一些严肃的NLP(自然语言处理)。

例如,他们拥有来自整个互联网的大量数据,以至于他们可以计算出三个单词序列出现的次数(称为三元组)。因此,如果他们看到一个句子:“pink frugr concert”,他们可以看到它的点击率很少,然后在语料库中找到最有可能的“pink * concert”。

他们显然只是做了Davide Gualano所说的一种变化,所以一定要阅读那个链接。谷歌当然使用它所知道的所有网页作为一个语料库,这使得它的算法特别有效。

关于“did you mean”算法的理论可以参考《信息检索导论》第3章。它可以在网上免费下载。第3.3节(第52页)准确地回答了你的问题。为了明确回答你的更新,你只需要一个单词字典,不需要其他任何东西(包括数百万用户)。

我猜…它可以

寻找词语 如果没有找到,使用一些算法来尝试“猜测”这个词。

可能是来自人工智能的东西,比如Hopfield网络或反向传播网络,或者其他“识别指纹”,恢复损坏的数据,或者Davide已经提到的拼写纠正……

最简单的方法是动态规划。

这是一种从信息检索中借来的算法,在现代生物信息学中大量使用,以查看两个基因序列有多相似。

最优解采用动态规划和递归。

这是一个已经解决的问题,有很多解决方案。在你找到一些开源代码之前,一直在你的周围打转。

除了上面的答案,如果你想自己快速实现一些东西,这里有一个建议-

算法

你可以在GitHub上找到该算法的实现和详细文档。

创建带有比较器的优先级队列。 创建一个Ternay搜索树,插入所有英语单词(来自Norvig的帖子)及其频率。 开始遍历TST,对于TST中遇到的每个单词,计算它与input_word之间的Levenshtein Distance(LD) 如果LD≤3,则将其置于优先队列中。 最后从优先队列中提取10个单词并显示。