我如何才能找到(遍历)有向图中从/到给定节点的所有周期?

例如,我想要这样的东西:

A->B->A
A->B->C->A

而不是: B - > C > B


当前回答

基于dfs的带有后边缘的变体确实会发现循环,但在许多情况下,它不会是最小循环。一般来说,DFS给出了存在循环的标志,但它不足以真正找到循环。例如,想象5个不同的循环共用两条边。仅仅使用DFS(包括回溯变量)没有简单的方法来识别周期。

Johnson算法确实给出了所有唯一的简单循环,并具有良好的时间和空间复杂度。

但如果你只想找到最小循环(意味着可能有多个循环通过任何顶点,我们感兴趣的是找到最小循环),并且你的图不是很大,你可以尝试使用下面的简单方法。 它非常简单,但与约翰逊的相比相当慢。

So, one of the absolutely easiest way to find MINIMAL cycles is to use Floyd's algorithm to find minimal paths between all the vertices using adjacency matrix. This algorithm is nowhere near as optimal as Johnson's, but it is so simple and its inner loop is so tight that for smaller graphs (<=50-100 nodes) it absolutely makes sense to use it. Time complexity is O(n^3), space complexity O(n^2) if you use parent tracking and O(1) if you don't. First of all let's find the answer to the question if there is a cycle. The algorithm is dead-simple. Below is snippet in Scala.

  val NO_EDGE = Integer.MAX_VALUE / 2

  def shortestPath(weights: Array[Array[Int]]) = {
    for (k <- weights.indices;
         i <- weights.indices;
         j <- weights.indices) {
      val throughK = weights(i)(k) + weights(k)(j)
      if (throughK < weights(i)(j)) {
        weights(i)(j) = throughK
      }
    }
  }

Originally this algorithm operates on weighted-edge graph to find all shortest paths between all pairs of nodes (hence the weights argument). For it to work correctly you need to provide 1 if there is a directed edge between the nodes or NO_EDGE otherwise. After algorithm executes, you can check the main diagonal, if there are values less then NO_EDGE than this node participates in a cycle of length equal to the value. Every other node of the same cycle will have the same value (on the main diagonal).

为了重建周期本身,我们需要使用带有父跟踪的稍微修改版本的算法。

  def shortestPath(weights: Array[Array[Int]], parents: Array[Array[Int]]) = {
    for (k <- weights.indices;
         i <- weights.indices;
         j <- weights.indices) {
      val throughK = weights(i)(k) + weights(k)(j)
      if (throughK < weights(i)(j)) {
        parents(i)(j) = k
        weights(i)(j) = throughK
      }
    }
  }

如果顶点之间有边,父矩阵最初应该包含边缘单元中的源顶点索引,否则为-1。 函数返回后,对于每条边,您都将引用到最短路径树中的父节点。 然后很容易恢复实际的循环。

总之,我们有下面的程序来求所有的最小循环

  val NO_EDGE = Integer.MAX_VALUE / 2;

  def shortestPathWithParentTracking(
         weights: Array[Array[Int]],
         parents: Array[Array[Int]]) = {
    for (k <- weights.indices;
         i <- weights.indices;
         j <- weights.indices) {
      val throughK = weights(i)(k) + weights(k)(j)
      if (throughK < weights(i)(j)) {
        parents(i)(j) = parents(i)(k)
        weights(i)(j) = throughK
      }
    }
  }

  def recoverCycles(
         cycleNodes: Seq[Int], 
         parents: Array[Array[Int]]): Set[Seq[Int]] = {
    val res = new mutable.HashSet[Seq[Int]]()
    for (node <- cycleNodes) {
      var cycle = new mutable.ArrayBuffer[Int]()
      cycle += node
      var other = parents(node)(node)
      do {
        cycle += other
        other = parents(other)(node)
      } while(other != node)
      res += cycle.sorted
    }
    res.toSet
  }

还有一个小的main方法来测试结果

  def main(args: Array[String]): Unit = {
    val n = 3
    val weights = Array(Array(NO_EDGE, 1, NO_EDGE), Array(NO_EDGE, NO_EDGE, 1), Array(1, NO_EDGE, NO_EDGE))
    val parents = Array(Array(-1, 1, -1), Array(-1, -1, 2), Array(0, -1, -1))
    shortestPathWithParentTracking(weights, parents)
    val cycleNodes = parents.indices.filter(i => parents(i)(i) < NO_EDGE)
    val cycles: Set[Seq[Int]] = recoverCycles(cycleNodes, parents)
    println("The following minimal cycle found:")
    cycles.foreach(c => println(c.mkString))
    println(s"Total: ${cycles.size} cycle found")
  }

输出是

The following minimal cycle found:
012
Total: 1 cycle found

其他回答

从节点X开始,检查所有子节点(如果无方向,父节点和子节点是等价的)。将这些子节点标记为X的子节点。对于任何这样的子节点A,标记它的子节点是A的子节点,X',其中X'标记为2步远。)如果您稍后点击X并将其标记为X的子节点”,这意味着X处于3节点周期中。回溯到它的父节点很容易(因为算法不支持这一点,所以你可以找到任何一个有X'的父节点)。

注意:如果图是无向的或者有任何双向边,这个算法会变得更复杂,假设你不想在一个周期内两次遍历同一条边。

我曾经在面试中遇到过这样的问题,我怀疑你遇到过这种情况,你来这里寻求帮助。把这个问题分解成三个问题就容易多了。

如何确定下一个有效点 路线 你如何确定一个点是否存在 被使用 你如何避免越过 同样的观点

问题1) 使用迭代器模式提供迭代路由结果的方法。放置获取下一个路由的逻辑的一个好地方可能是迭代器的“moveNext”。要找到有效的路由,这取决于您的数据结构。对我来说,这是一个sql表充满有效的路由可能性,所以我必须建立一个查询,以获得有效的目的地给定的源。

问题2) 当您找到每个节点时,将它们推入一个集合,这意味着您可以通过动态询问正在构建的集合,很容易地查看是否在某个点上“返回”。

问题3) 如果在任何时候你看到你正在折回,你可以从集合中弹出东西并“后退”。然后从这一点开始,再次尝试“前进”。

黑客:如果你正在使用Sql Server 2008,有一些新的“层次结构”的东西,你可以用它来快速解决这个问题,如果你把你的数据结构成树状。

在DAG中查找所有循环涉及两个步骤(算法)。

第一步是使用Tarjan的算法找到强连接组件的集合。

从任意顶点开始。 这个顶点的DFS。每个节点x保留两个数字,dfs_index[x]和dfs_lowval[x]。 Dfs_index [x]存储访问节点的时间,而dfs_lowval[x] = min(dfs_low[k]) where K是x的所有子结点在dfs生成树中不是x的父结点。 具有相同dfs_lowval[x]的所有节点都在同一个强连接组件中。

第二步是在连接的组件中找到循环(路径)。我的建议是使用改进版的Hierholzer算法。

这个想法是:

Choose any starting vertex v, and follow a trail of edges from that vertex until you return to v. It is not possible to get stuck at any vertex other than v, because the even degree of all vertices ensures that, when the trail enters another vertex w there must be an unused edge leaving w. The tour formed in this way is a closed tour, but may not cover all the vertices and edges of the initial graph. As long as there exists a vertex v that belongs to the current tour but that has adjacent edges not part of the tour, start another trail from v, following unused edges until you return to v, and join the tour formed in this way to the previous tour.

下面是带有测试用例的Java实现的链接:

http://stones333.blogspot.com/2013/12/find-cycles-in-directed-graph-dag.html

深度优先搜索和回溯应该在这里工作。 保存一个布尔值数组,以跟踪您以前是否访问过某个节点。如果您没有新节点可访问(不涉及已经访问过的节点),那么只需返回并尝试不同的分支。

如果你有一个邻接表来表示图,DFS很容易实现。例如adj[A] = {B,C}表示B和C是A的子结点。

例如,下面的伪代码。“start”是开始的节点。

dfs(adj,node,visited):  
  if (visited[node]):  
    if (node == start):  
      "found a path"  
    return;  
  visited[node]=YES;  
  for child in adj[node]:  
    dfs(adj,child,visited)
  visited[node]=NO;

用开始节点调用上面的函数:

visited = {}
dfs(adj,start,visited)

CXXGraph库提供了一组检测周期的算法和函数。

要获得完整的算法解释,请访问wiki。