如何在熊猫身上做到这一点:
我在单个文本列上有一个函数extract_text_features,返回多个输出列。具体来说,该函数返回6个值。
该函数可以工作,但是似乎没有任何合适的返回类型(pandas DataFrame/ numpy数组/ Python列表),以便输出可以正确分配df。Ix [:,10:16] = df.textcol.map(extract_text_features)
所以我认为我需要回落到迭代与df.iterrows(),按此?
更新:
使用df.iterrows()迭代至少要慢20倍,因此我放弃并将该函数分解为6个不同的.map(lambda…)调用。
更新2:这个问题是在v0.11.0版本被问到的,在可用性df之前。在v0.16中改进了Apply或添加了df.assign()。因此,很多问题和答案都不太相关。
我通常使用zip:
>>> df = pd.DataFrame([[i] for i in range(10)], columns=['num'])
>>> df
num
0 0
1 1
2 2
3 3
4 4
5 5
6 6
7 7
8 8
9 9
>>> def powers(x):
>>> return x, x**2, x**3, x**4, x**5, x**6
>>> df['p1'], df['p2'], df['p3'], df['p4'], df['p5'], df['p6'] = \
>>> zip(*df['num'].map(powers))
>>> df
num p1 p2 p3 p4 p5 p6
0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1
2 2 2 4 8 16 32 64
3 3 3 9 27 81 243 729
4 4 4 16 64 256 1024 4096
5 5 5 25 125 625 3125 15625
6 6 6 36 216 1296 7776 46656
7 7 7 49 343 2401 16807 117649
8 8 8 64 512 4096 32768 262144
9 9 9 81 729 6561 59049 531441
我已经研究了几种方法,这里显示的方法(返回熊猫系列)似乎不是最有效的。
如果我们从一个较大的随机数据的数据框架开始:
# Setup a dataframe of random numbers and create a
df = pd.DataFrame(np.random.randn(10000,3),columns=list('ABC'))
df['D'] = df.apply(lambda r: ':'.join(map(str, (r.A, r.B, r.C))), axis=1)
columns = 'new_a', 'new_b', 'new_c'
示例如下:
# Create the dataframe by returning a series
def method_b(v):
return pd.Series({k: v for k, v in zip(columns, v.split(':'))})
%timeit -n10 -r3 df.D.apply(method_b)
10圈,最好的3:2.77秒每圈
另一种方法:
# Create a dataframe from a series of tuples
def method_a(v):
return v.split(':')
%timeit -n10 -r3 pd.DataFrame(df.D.apply(method_a).tolist(), columns=columns)
10个循环,最好的3:8.85毫秒每循环
根据我的估算,采用一系列元组然后将其转换为DataFrame要有效得多。如果我的工作中出现了错误,我很想听听人们的想法。
我通常使用zip:
>>> df = pd.DataFrame([[i] for i in range(10)], columns=['num'])
>>> df
num
0 0
1 1
2 2
3 3
4 4
5 5
6 6
7 7
8 8
9 9
>>> def powers(x):
>>> return x, x**2, x**3, x**4, x**5, x**6
>>> df['p1'], df['p2'], df['p3'], df['p4'], df['p5'], df['p6'] = \
>>> zip(*df['num'].map(powers))
>>> df
num p1 p2 p3 p4 p5 p6
0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1
2 2 2 4 8 16 32 64
3 3 3 9 27 81 243 729
4 4 4 16 64 256 1024 4096
5 5 5 25 125 625 3125 15625
6 6 6 36 216 1296 7776 46656
7 7 7 49 343 2401 16807 117649
8 8 8 64 512 4096 32768 262144
9 9 9 81 729 6561 59049 531441
这对我来说很管用:
import pandas as pd
import numpy as np
future = pd.DataFrame(
pd.date_range('2022-09-01',periods=360),
columns=['date']
)
def featurize(datetime):
return pd.Series({
'month':datetime.month,
'year':datetime.year,
'dayofweek':datetime.dayofweek,
'dayofyear':datetime.dayofyear
})
future.loc[
:,['month','year','dayofweek','dayofyear']
] = future.date.apply(featurize)
future.head()
输出:
date month year dayofweek dayofyear
0 2022-09-01 9 2022 3 244
1 2022-09-02 9 2022 4 245
2 2022-09-03 9 2022 5 246
3 2022-09-04 9 2022 6 247
4 2022-09-05 9 2022 0 248
只需使用result_type="expand"
df = pd.DataFrame(np.random.randint(0,10,(10,2)), columns=["random", "a"])
df[["sq_a","cube_a"]] = df.apply(lambda x: [x.a**2, x.a**3], axis=1, result_type="expand")