如何在熊猫身上做到这一点:
我在单个文本列上有一个函数extract_text_features,返回多个输出列。具体来说,该函数返回6个值。
该函数可以工作,但是似乎没有任何合适的返回类型(pandas DataFrame/ numpy数组/ Python列表),以便输出可以正确分配df。Ix [:,10:16] = df.textcol.map(extract_text_features)
所以我认为我需要回落到迭代与df.iterrows(),按此?
更新:
使用df.iterrows()迭代至少要慢20倍,因此我放弃并将该函数分解为6个不同的.map(lambda…)调用。
更新2:这个问题是在v0.11.0版本被问到的,在可用性df之前。在v0.16中改进了Apply或添加了df.assign()。因此,很多问题和答案都不太相关。
只需使用result_type="expand"
df = pd.DataFrame(np.random.randint(0,10,(10,2)), columns=["random", "a"])
df[["sq_a","cube_a"]] = df.apply(lambda x: [x.a**2, x.a**3], axis=1, result_type="expand")
这是我过去所做的
df = pd.DataFrame({'textcol' : np.random.rand(5)})
df
textcol
0 0.626524
1 0.119967
2 0.803650
3 0.100880
4 0.017859
df.textcol.apply(lambda s: pd.Series({'feature1':s+1, 'feature2':s-1}))
feature1 feature2
0 1.626524 -0.373476
1 1.119967 -0.880033
2 1.803650 -0.196350
3 1.100880 -0.899120
4 1.017859 -0.982141
为完整性而编辑
pd.concat([df, df.textcol.apply(lambda s: pd.Series({'feature1':s+1, 'feature2':s-1}))], axis=1)
textcol feature1 feature2
0 0.626524 1.626524 -0.373476
1 0.119967 1.119967 -0.880033
2 0.803650 1.803650 -0.196350
3 0.100880 1.100880 -0.899120
4 0.017859 1.017859 -0.982141
只需使用result_type="expand"
df = pd.DataFrame(np.random.randint(0,10,(10,2)), columns=["random", "a"])
df[["sq_a","cube_a"]] = df.apply(lambda x: [x.a**2, x.a**3], axis=1, result_type="expand")
基于user1827356的答案,你可以使用df.merge一次性完成赋值:
df.merge(df.textcol.apply(lambda s: pd.Series({'feature1':s+1, 'feature2':s-1})),
left_index=True, right_index=True)
textcol feature1 feature2
0 0.772692 1.772692 -0.227308
1 0.857210 1.857210 -0.142790
2 0.065639 1.065639 -0.934361
3 0.819160 1.819160 -0.180840
4 0.088212 1.088212 -0.911788
编辑:
请注意内存消耗大,速度慢:https://ys-l.github.io/posts/2015/08/28/how-not-to-use-pandas-apply/ !
我通常使用zip:
>>> df = pd.DataFrame([[i] for i in range(10)], columns=['num'])
>>> df
num
0 0
1 1
2 2
3 3
4 4
5 5
6 6
7 7
8 8
9 9
>>> def powers(x):
>>> return x, x**2, x**3, x**4, x**5, x**6
>>> df['p1'], df['p2'], df['p3'], df['p4'], df['p5'], df['p6'] = \
>>> zip(*df['num'].map(powers))
>>> df
num p1 p2 p3 p4 p5 p6
0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1
2 2 2 4 8 16 32 64
3 3 3 9 27 81 243 729
4 4 4 16 64 256 1024 4096
5 5 5 25 125 625 3125 15625
6 6 6 36 216 1296 7776 46656
7 7 7 49 343 2401 16807 117649
8 8 8 64 512 4096 32768 262144
9 9 9 81 729 6561 59049 531441
我已经研究了几种方法,这里显示的方法(返回熊猫系列)似乎不是最有效的。
如果我们从一个较大的随机数据的数据框架开始:
# Setup a dataframe of random numbers and create a
df = pd.DataFrame(np.random.randn(10000,3),columns=list('ABC'))
df['D'] = df.apply(lambda r: ':'.join(map(str, (r.A, r.B, r.C))), axis=1)
columns = 'new_a', 'new_b', 'new_c'
示例如下:
# Create the dataframe by returning a series
def method_b(v):
return pd.Series({k: v for k, v in zip(columns, v.split(':'))})
%timeit -n10 -r3 df.D.apply(method_b)
10圈,最好的3:2.77秒每圈
另一种方法:
# Create a dataframe from a series of tuples
def method_a(v):
return v.split(':')
%timeit -n10 -r3 pd.DataFrame(df.D.apply(method_a).tolist(), columns=columns)
10个循环,最好的3:8.85毫秒每循环
根据我的估算,采用一系列元组然后将其转换为DataFrame要有效得多。如果我的工作中出现了错误,我很想听听人们的想法。