如何在纯SQL中请求随机行(或尽可能接近真正的随机)?
当前回答
要小心,因为TableSample实际上并不返回随机的行样本。它引导您的查询查看组成行的8KB页面的随机样本。然后,对这些页面中包含的数据执行查询。由于数据在这些页面上的分组方式(插入顺序等),这可能导致数据实际上不是随机样本。
参见:http://www.mssqltips.com/tip.asp?tip=1308
该表的MSDN页面包含了如何生成实际随机数据样本的示例。
http://msdn.microsoft.com/en-us/library/ms189108.aspx
其他回答
对于SQL Server 2005和2008,如果我们想要一个随机的个别行样本(来自Books Online):
SELECT * FROM Sales.SalesOrderDetail
WHERE 0.01 >= CAST(CHECKSUM(NEWID(), SalesOrderID) & 0x7fffffff AS float)
/ CAST (0x7fffffff AS int)
对于SQL Server和需要“单个随机行”..
如果不需要真采样,生成一个随机值[0,max_rows)并使用ORDER BY..OFFSET..从SQL Server 2012+获取。
如果COUNT和ORDER BY在适当的索引上,这是非常快的——这样数据就已经沿着查询行“排序”了。如果涵盖了这些操作,那么它就是一个快速请求,并且不会受到使用ORDER BY NEWID()或类似方法的可怕可伸缩性的影响。显然,这种方法在非索引的HEAP表上不能很好地伸缩。
declare @rows int
select @rows = count(1) from t
-- Other issues if row counts in the bigint range..
-- This is also not 'true random', although such is likely not required.
declare @skip int = convert(int, @rows * rand())
select t.*
from t
order by t.id -- Make sure this is clustered PK or IX/UCL axis!
offset (@skip) rows
fetch first 1 row only
确保使用了适当的事务隔离级别和/或考虑0结果。
对于SQL Server,需要一个“一般行样本”的方法..
注意:这是一个在SQL Server上找到的关于获取行样本的特定问题的答案的改编。它是根据上下文量身定制的。
虽然这里应该谨慎使用一般抽样方法,但对于其他答案(以及关于非伸缩和/或有问题的实现的重复建议),它仍然是潜在的有用信息。如果目标是找到“单个随机行”,那么这种抽样方法的效率低于所示的第一个代码,并且容易出错。
这是一个更新和改进的对行百分比进行抽样的形式。它基于与其他一些使用CHECKSUM / BINARY_CHECKSUM和modulus的答案相同的概念。
It is relatively fast over huge data sets and can be efficiently used in/with derived queries. Millions of pre-filtered rows can be sampled in seconds with no tempdb usage and, if aligned with the rest of the query, the overhead is often minimal. Does not suffer from CHECKSUM(*) / BINARY_CHECKSUM(*) issues with runs of data. When using the CHECKSUM(*) approach, the rows can be selected in "chunks" and not "random" at all! This is because CHECKSUM prefers speed over distribution. Results in a stable/repeatable row selection and can be trivially changed to produce different rows on subsequent query executions. Approaches that use NEWID() can never be stable/repeatable. Does not use ORDER BY NEWID() of the entire input set, as ordering can become a significant bottleneck with large input sets. Avoiding unnecessary sorting also reduces memory and tempdb usage. Does not use TABLESAMPLE and thus works with a WHERE pre-filter.
这是要点。有关更多细节和注意事项,请参阅这个答案。
Naï亿一下:
declare @sample_percent decimal(7, 4)
-- Looking at this value should be an indicator of why a
-- general sampling approach can be error-prone to select 1 row.
select @sample_percent = 100.0 / count(1) from t
-- BAD!
-- When choosing appropriate sample percent of "approximately 1 row"
-- it is very reasonable to expect 0 rows, which definitely fails the ask!
-- If choosing a larger sample size the distribution is heavily skewed forward,
-- and is very much NOT 'true random'.
select top 1
t.*
from t
where 1=1
and ( -- sample
@sample_percent = 100
or abs(
convert(bigint, hashbytes('SHA1', convert(varbinary(32), t.rowguid)))
) % (1000 * 100) < (1000 * @sample_percent)
)
这可以在很大程度上通过混合抽样和ORDER by从小得多的样本集中选择的混合查询来补救。这将排序操作限制为样本大小,而不是原始表的大小。
-- Sample "approximately 1000 rows" from the table,
-- dealing with some edge-cases.
declare @rows int
select @rows = count(1) from t
declare @sample_size int = 1000
declare @sample_percent decimal(7, 4) = case
when @rows <= 1000 then 100 -- not enough rows
when (100.0 * @sample_size / @rows) < 0.0001 then 0.0001 -- min sample percent
else 100.0 * @sample_size / @rows -- everything else
end
-- There is a statistical "guarantee" of having sampled a limited-yet-non-zero number of rows.
-- The limited rows are then sorted randomly before the first is selected.
select top 1
t.*
from t
where 1=1
and ( -- sample
@sample_percent = 100
or abs(
convert(bigint, hashbytes('SHA1', convert(varbinary(32), t.rowguid)))
) % (1000 * 100) < (1000 * @sample_percent)
)
-- ONLY the sampled rows are ordered, which improves scalability.
order by newid()
我不知道这有多有效,但我以前用过:
SELECT TOP 1 * FROM MyTable ORDER BY newid()
因为guid是非常随机的,所以顺序意味着您得到的是随机行。
我还没看出来答案有什么不同。我有一个额外的约束条件,给定一个初始种子,每次都要选择相同的行集。
对于MS SQL:
最小的例子:
select top 10 percent *
from table_name
order by rand(checksum(*))
规范化执行时间:1.00
NewId()例子:
select top 10 percent *
from table_name
order by newid()
规范化执行时间:1.02
NewId()比rand(checksum(*))慢不了多少,所以您可能不希望对大型记录集使用它。
初始种子选择:
declare @seed int
set @seed = Year(getdate()) * month(getdate()) /* any other initial seed here */
select top 10 percent *
from table_name
order by rand(checksum(*) % seed) /* any other math function here */
如果给定一个种子,你需要选择相同的集合,这似乎是可行的。
一个简单而有效的方法从http://akinas.com/pages/en/blog/mysql_random_row/
SET @i = (SELECT FLOOR(RAND() * COUNT(*)) FROM table); PREPARE get_stmt FROM 'SELECT * FROM table LIMIT ?, 1'; EXECUTE get_stmt USING @i;
推荐文章
- 如何从枚举中选择一个随机值?
- 使用SQL查询查找最近的纬度/经度
- 将一列的多个结果行连接为一列,按另一列分组
- 检查MySQL表是否存在而不使用“select from”语法?
- random.seed():它做什么?
- 在PostgreSQL中快速发现表的行数
- 更改varchar列的大小为较低的长度
- 从表中选择1是什么意思?
- Java中生成UUID字符串的有效方法(UUID. randomuuid ().toString()不带破折号)
- SQL Server中User和Login的区别
- 如何更改表的默认排序规则?
- 为两列的组合添加唯一的约束
- 设置NOW()为datetime数据类型的默认值?
- 在MySQL中Datetime等于或大于今天
- 如何从字典中获得一个随机值?