我有两个不同形状的numpy数组,但具有相同的长度(前维数)。我想对它们进行洗牌,以便相应的元素继续对应——即根据它们的前导索引对它们进行一致的洗牌。

这段代码可以工作,并说明了我的目标:

def shuffle_in_unison(a, b):
    assert len(a) == len(b)
    shuffled_a = numpy.empty(a.shape, dtype=a.dtype)
    shuffled_b = numpy.empty(b.shape, dtype=b.dtype)
    permutation = numpy.random.permutation(len(a))
    for old_index, new_index in enumerate(permutation):
        shuffled_a[new_index] = a[old_index]
        shuffled_b[new_index] = b[old_index]
    return shuffled_a, shuffled_b

例如:

>>> a = numpy.asarray([[1, 1], [2, 2], [3, 3]])
>>> b = numpy.asarray([1, 2, 3])
>>> shuffle_in_unison(a, b)
(array([[2, 2],
       [1, 1],
       [3, 3]]), array([2, 1, 3]))

然而,这感觉很笨拙、效率低、速度慢,而且需要复制数组——我宁愿在适当的位置重新排列它们,因为它们会相当大。

还有更好的办法吗?更快的执行和更低的内存使用是我的主要目标,但优雅的代码也会很好。

我的另一个想法是:

def shuffle_in_unison_scary(a, b):
    rng_state = numpy.random.get_state()
    numpy.random.shuffle(a)
    numpy.random.set_state(rng_state)
    numpy.random.shuffle(b)

这工作…但这有点可怕,因为我几乎没有看到它会继续工作的保证——例如,它看起来不像是那种保证在numpy版本中存活的东西。


当前回答

James在2015年写了一个很有用的sklearn解决方案。但是他添加了一个随机状态变量,这是不需要的。在下面的代码中,自动假设来自numpy的随机状态。

X = np.array([[1., 0.], [2., 1.], [0., 0.]])
y = np.array([0, 1, 2])
from sklearn.utils import shuffle
X, y = shuffle(X, y)

其他回答

有一个众所周知的函数可以处理这个问题:

from sklearn.model_selection import train_test_split
X, _, Y, _ = train_test_split(X,Y, test_size=0.0)

只要将test_size设置为0,就可以避免分裂并得到打乱的数据。 虽然它通常用于分割训练和测试数据,但它也会打乱它们。 从文档

将数组或矩阵分割为随机的训练和测试子集 包装输入验证和的快速实用程序 next (ShuffleSplit()。split(X, y))和应用程序将数据输入到 类中拆分(和可选子采样)数据的单个调用 oneliner。

举个例子,这就是我正在做的:

combo = []
for i in range(60000):
    combo.append((images[i], labels[i]))

shuffle(combo)

im = []
lab = []
for c in combo:
    im.append(c[0])
    lab.append(c[1])
images = np.asarray(im)
labels = np.asarray(lab)

我扩展了python的random.shuffle()来接受第二个arg:

def shuffle_together(x, y):
    assert len(x) == len(y)

    for i in reversed(xrange(1, len(x))):
        # pick an element in x[:i+1] with which to exchange x[i]
        j = int(random.random() * (i+1))
        x[i], x[j] = x[j], x[i]
        y[i], y[j] = y[j], y[i]

这样,我可以确保洗牌发生在适当的位置,并且函数不会太长或太复杂。

在我看来,使用种子是最简单的方法:

random.seed(seed)
random.shuffle(x_data)
# reset the same seed to get the identical random sequence and shuffle the y
random.seed(seed)
random.shuffle(y_data)

你可以使用NumPy的数组索引:

def unison_shuffled_copies(a, b):
    assert len(a) == len(b)
    p = numpy.random.permutation(len(a))
    return a[p], b[p]

这将导致创建单独的统一打乱数组。