我想使用print()和IPython display()显示给定格式的熊猫数据框架。例如:

df = pd.DataFrame([123.4567, 234.5678, 345.6789, 456.7890],
                  index=['foo','bar','baz','quux'],
                  columns=['cost'])
print df

         cost
foo   123.4567
bar   234.5678
baz   345.6789
quux  456.7890

我想以某种方式迫使它印出来

         cost
foo   $123.46
bar   $234.57
baz   $345.68
quux  $456.79

无需修改数据本身或创建副本,只需更改数据的显示方式。

我该怎么做呢?


当前回答

类似于上面的unutbu,你也可以像下面这样使用applymap:

import pandas as pd
df = pd.DataFrame([123.4567, 234.5678, 345.6789, 456.7890],
                  index=['foo','bar','baz','quux'],
                  columns=['cost'])

df = df.applymap("${0:.2f}".format)

其他回答

如果不想修改数据帧,可以为该列使用自定义格式化器。

import pandas as pd
pd.options.display.float_format = '${:,.2f}'.format
df = pd.DataFrame([123.4567, 234.5678, 345.6789, 456.7890],
                  index=['foo','bar','baz','quux'],
                  columns=['cost'])


print df.to_string(formatters={'cost':'${:,.2f}'.format})

收益率

        cost
foo  $123.46
bar  $234.57
baz  $345.68
quux $456.79
import pandas as pd
pd.options.display.float_format = '${:,.2f}'.format
df = pd.DataFrame([123.4567, 234.5678, 345.6789, 456.7890],
                  index=['foo','bar','baz','quux'],
                  columns=['cost'])
print(df)

收益率

        cost
foo  $123.46
bar  $234.57
baz  $345.68
quux $456.79

但这只在你希望每个浮点数都用美元符号格式化时才有效。

否则,如果你只想为一些浮点数设置美元格式,那么我认为你必须预先修改数据帧(将这些浮点数转换为字符串):

import pandas as pd
df = pd.DataFrame([123.4567, 234.5678, 345.6789, 456.7890],
                  index=['foo','bar','baz','quux'],
                  columns=['cost'])
df['foo'] = df['cost']
df['cost'] = df['cost'].map('${:,.2f}'.format)
print(df)

收益率

         cost       foo
foo   $123.46  123.4567
bar   $234.57  234.5678
baz   $345.68  345.6789
quux  $456.79  456.7890

现在,我首选的解决方案是使用上下文管理器来显示数据框架:

with pd.option_context('display.float_format', '${:,.2f}'.format):
    display(df)

该格式仅对该数据帧的显示有效

如果您不想永久地改变显示格式,并且可能稍后应用一种新的格式,我个人倾向于使用资源管理器(Python中的with语句)。在你的例子中,你可以这样做:

with pd.option_context('display.float_format', '${:0.2f}'.format):
   print(df)

如果您碰巧在代码中需要不同的格式,您可以通过改变上面代码片段中的格式来更改它。

类似于上面的unutbu,你也可以像下面这样使用applymap:

import pandas as pd
df = pd.DataFrame([123.4567, 234.5678, 345.6789, 456.7890],
                  index=['foo','bar','baz','quux'],
                  columns=['cost'])

df = df.applymap("${0:.2f}".format)