我有一个清单:

a = [32, 37, 28, 30, 37, 25, 27, 24, 35, 55, 23, 31, 55, 21, 40, 18, 50,
             35, 41, 49, 37, 19, 40, 41, 31]

最大元素是55(两个元素在位置9和12)

我需要找到在哪个位置(s)的最大值是位于。请帮助。


当前回答

这里是最大值和它出现的索引:

>>> from collections import defaultdict
>>> d = defaultdict(list)
>>> a = [32, 37, 28, 30, 37, 25, 27, 24, 35, 55, 23, 31, 55, 21, 40, 18, 50, 35, 41, 49, 37, 19, 40, 41, 31]
>>> for i, x in enumerate(a):
...     d[x].append(i)
... 
>>> k = max(d.keys())
>>> print k, d[k]
55 [9, 12]

后来:为了满足@SilentGhost

>>> from itertools import takewhile
>>> import heapq
>>> 
>>> def popper(heap):
...     while heap:
...         yield heapq.heappop(heap)
... 
>>> a = [32, 37, 28, 30, 37, 25, 27, 24, 35, 55, 23, 31, 55, 21, 40, 18, 50, 35, 41, 49, 37, 19, 40, 41, 31]
>>> h = [(-x, i) for i, x in enumerate(a)]
>>> heapq.heapify(h)
>>> 
>>> largest = heapq.heappop(h)
>>> indexes = [largest[1]] + [x[1] for x in takewhile(lambda large: large[0] == largest[0], popper(h))]
>>> print -largest[0], indexes
55 [9, 12]

其他回答

@shash在其他地方回答了这个问题

找到最大列表元素的索引的python方法是 Position = max(enumerate(a), key=lambda x: x[1])[0]

一个通过。然而,它比@Silent_Ghost的解决方案慢,甚至比@nmichaels的解决方案更慢:

for i in s m j n; do echo $i;  python -mtimeit -s"import maxelements as me" "me.maxelements_${i}(me.a)"; done
s
100000 loops, best of 3: 3.13 usec per loop
m
100000 loops, best of 3: 4.99 usec per loop
j
100000 loops, best of 3: 3.71 usec per loop
n
1000000 loops, best of 3: 1.31 usec per loop
a = [32, 37, 28, 30, 37, 25, 27, 24, 35, 
         55, 23, 31, 55, 21, 40, 18, 50,
         35, 41, 49, 37, 19, 40, 41, 31]

import pandas as pd

pd.Series(a).idxmax()

9

我通常都是这么做的。

还有一个解决方案,只给出第一个外观,可以通过使用numpy实现:

>>> import numpy as np
>>> a_np = np.array(a)
>>> np.argmax(a_np)
9
>>> m = max(a)
>>> [i for i, j in enumerate(a) if j == m]
[9, 12]

我无法重现@martineau引用的@SilentGhost-beating的表演。以下是我的比较结果:

=== maxelements.py ===

a = [32, 37, 28, 30, 37, 25, 27, 24, 35, 55, 23, 31, 55, 21, 40, 18, 50,
             35, 41, 49, 37, 19, 40, 41, 31]
b = range(10000)
c = range(10000 - 1, -1, -1)
d = b + c

def maxelements_s(seq): # @SilentGhost
    ''' Return list of position(s) of largest element '''
    m = max(seq)
    return [i for i, j in enumerate(seq) if j == m]

def maxelements_m(seq): # @martineau
    ''' Return list of position(s) of largest element '''
    max_indices = []
    if len(seq):
        max_val = seq[0]
        for i, val in ((i, val) for i, val in enumerate(seq) if val >= max_val):
            if val == max_val:
                max_indices.append(i)
            else:
                max_val = val
                max_indices = [i]
    return max_indices

def maxelements_j(seq): # @John Machin
    ''' Return list of position(s) of largest element '''
    if not seq: return []
    max_val = seq[0] if seq[0] >= seq[-1] else seq[-1]
    max_indices = []
    for i, val in enumerate(seq):
        if val < max_val: continue
        if val == max_val:
            max_indices.append(i)
        else:
            max_val = val
            max_indices = [i]
    return max_indices

在Windows XP SP3上运行Python 2.7的旧笔记本电脑的结果:

>\python27\python -mtimeit -s"import maxelements as me" "me.maxelements_s(me.a)"
100000 loops, best of 3: 6.88 usec per loop

>\python27\python -mtimeit -s"import maxelements as me" "me.maxelements_m(me.a)"
100000 loops, best of 3: 11.1 usec per loop

>\python27\python -mtimeit -s"import maxelements as me" "me.maxelements_j(me.a)"
100000 loops, best of 3: 8.51 usec per loop

>\python27\python -mtimeit -s"import maxelements as me;a100=me.a*100" "me.maxelements_s(a100)"
1000 loops, best of 3: 535 usec per loop

>\python27\python -mtimeit -s"import maxelements as me;a100=me.a*100" "me.maxelements_m(a100)"
1000 loops, best of 3: 558 usec per loop

>\python27\python -mtimeit -s"import maxelements as me;a100=me.a*100" "me.maxelements_j(a100)"
1000 loops, best of 3: 489 usec per loop