我如何在Java中打印一个二叉树,这样输出就像:

   4 
  / \ 
 2   5 

我的节点:

public class Node<A extends Comparable> {
    Node<A> left, right;
    A data;

    public Node(A data){
        this.data = data;
    }
}

当前回答

using map...
{
Map<Integer,String> m = new LinkedHashMap<>();

         tn.printNodeWithLvl(node,l,m);

        for(Entry<Integer, String> map :m.entrySet()) {
            System.out.println(map.getValue());
        }
then....method


   private  void printNodeWithLvl(Node node,int l,Map<Integer,String> m) {
       if(node==null) {
           return;
       }
      if(m.containsKey(l)) {
          m.put(l, new StringBuilder(m.get(l)).append(node.value).toString());
      }else {
          m.put(l, node.value+"");
      }
      l++;
      printNodeWithLvl( node.left,l,m);
      printNodeWithLvl(node.right,l,m);

    }
}

其他回答

我发现VasyaNovikov的答案对于打印大型通用树非常有用,并将其修改为二叉树

代码:

class TreeNode {
    Integer data = null;
    TreeNode left = null;
    TreeNode right = null;

    TreeNode(Integer data) {this.data = data;}

    public void print() {
        print("", this, false);
    }

    public void print(String prefix, TreeNode n, boolean isLeft) {
        if (n != null) {
            System.out.println (prefix + (isLeft ? "|-- " : "\\-- ") + n.data);
            print(prefix + (isLeft ? "|   " : "    "), n.left, true);
            print(prefix + (isLeft ? "|   " : "    "), n.right, false);
        }
    }
}

样例输出:

\-- 7
    |-- 3
    |   |-- 1
    |   |   \-- 2
    |   \-- 5
    |       |-- 4
    |       \-- 6
    \-- 11
        |-- 9
        |   |-- 8
        |   \-- 10
        \-- 13
            |-- 12
            \-- 14
private StringBuilder prettyPrint(Node root, int currentHeight, int totalHeight) {
        StringBuilder sb = new StringBuilder();
        int spaces = getSpaceCount(totalHeight-currentHeight + 1);
        if(root == null) {
            //create a 'spatial' block and return it
            String row = String.format("%"+(2*spaces+1)+"s%n", "");
            //now repeat this row space+1 times
            String block = new String(new char[spaces+1]).replace("\0", row);
            return new StringBuilder(block);
        }
        if(currentHeight==totalHeight) return new StringBuilder(root.data+"");
        int slashes = getSlashCount(totalHeight-currentHeight +1);
        sb.append(String.format("%"+(spaces+1)+"s%"+spaces+"s", root.data+"", ""));
        sb.append("\n");
        //now print / and \
        // but make sure that left and right exists
        char leftSlash = root.left == null? ' ':'/';
        char rightSlash = root.right==null? ' ':'\\';
        int spaceInBetween = 1;
        for(int i=0, space = spaces-1; i<slashes; i++, space --, spaceInBetween+=2) {
            for(int j=0; j<space; j++) sb.append(" ");
            sb.append(leftSlash);
            for(int j=0; j<spaceInBetween; j++) sb.append(" ");
            sb.append(rightSlash+"");
            for(int j=0; j<space; j++) sb.append(" ");
            sb.append("\n");
        }
        //sb.append("\n");

        //now get string representations of left and right subtrees
        StringBuilder leftTree = prettyPrint(root.left, currentHeight+1, totalHeight);
        StringBuilder rightTree = prettyPrint(root.right, currentHeight+1, totalHeight);
        // now line by line print the trees side by side
        Scanner leftScanner = new Scanner(leftTree.toString());
        Scanner rightScanner = new Scanner(rightTree.toString());
//      spaceInBetween+=1;
        while(leftScanner.hasNextLine()) {
            if(currentHeight==totalHeight-1) {
                sb.append(String.format("%-2s %2s", leftScanner.nextLine(), rightScanner.nextLine()));
                sb.append("\n");
                spaceInBetween-=2;              
            }
            else {
                sb.append(leftScanner.nextLine());
                sb.append(" ");
                sb.append(rightScanner.nextLine()+"\n");
            }
        }

        return sb;

    }
private int getSpaceCount(int height) {
        return (int) (3*Math.pow(2, height-2)-1);
    }
private int getSlashCount(int height) {
        if(height <= 3) return height -1;
        return (int) (3*Math.pow(2, height-3)-1);
    }

https://github.com/murtraja/java-binary-tree-printer

只适用于1到2位整数(我懒得让它通用)

改编自Vasya Novikov的答案,使其更二进制,并使用StringBuilder提高效率(在Java中将String对象连接在一起通常效率很低)。

public StringBuilder toString(StringBuilder prefix, boolean isTail, StringBuilder sb) {
    if(right!=null) {
        right.toString(new StringBuilder().append(prefix).append(isTail ? "│   " : "    "), false, sb);
    }
    sb.append(prefix).append(isTail ? "└── " : "┌── ").append(value.toString()).append("\n");
    if(left!=null) {
        left.toString(new StringBuilder().append(prefix).append(isTail ? "    " : "│   "), true, sb);
    }
    return sb;
}

@Override
public String toString() {
    return this.toString(new StringBuilder(), true, new StringBuilder()).toString();
}

输出:

│       ┌── 7
│   ┌── 6
│   │   └── 5
└── 4
    │   ┌── 3
    └── 2
        └── 1
            └── 0

根据VasyaNovikov的回答。改进了一些Java魔术:泛型和函数接口。

/**
 * Print a tree structure in a pretty ASCII fromat.
 * @param prefix Currnet previx. Use "" in initial call!
 * @param node The current node. Pass the root node of your tree in initial call.
 * @param getChildrenFunc A {@link Function} that returns the children of a given node.
 * @param isTail Is node the last of its sibblings. Use true in initial call. (This is needed for pretty printing.)
 * @param <T> The type of your nodes. Anything that has a toString can be used.
 */
private <T> void printTreeRec(String prefix, T node, Function<T, List<T>> getChildrenFunc, boolean isTail) {
    String nodeName = node.toString();
    String nodeConnection = isTail ? "└── " : "├── ";
    log.debug(prefix + nodeConnection + nodeName);
    List<T> children = getChildrenFunc.apply(node);
    for (int i = 0; i < children.size(); i++) {
        String newPrefix = prefix + (isTail ? "    " : "│   ");
        printTreeRec(newPrefix, children.get(i), getChildrenFunc, i == children.size()-1);
    }
}

初始调用示例:

Function<ChecksumModel, List<ChecksumModel>> getChildrenFunc = node -> getChildrenOf(node)
printTreeRec("", rootNode, getChildrenFunc, true);

将输出如下内容

└── rootNode
    ├── childNode1
    ├── childNode2
    │   ├── childNode2.1
    │   ├── childNode2.2
    │   └── childNode2.3
    ├── childNode3
    └── childNode4

试试这个:

public static void print(int[] minHeap, int minWidth) {

    int size = minHeap.length;

    int level = log2(size);
    int maxLength = (int) Math.pow(2, level) * minWidth;
    int currentLevel = -1 ;
    int width = maxLength;

    for (int i = 0; i < size; i++) {
        if (log2(i + 1) > currentLevel) {
            currentLevel++;
            System.out.println();
            width = maxLength / (int) Math.pow(2, currentLevel);
        }
        System.out.print(StringUtils.center(String.valueOf(minHeap[i]), width));
    }
    System.out.println();
}

private static int log2(int n) {
    return (int) (Math.log(n) / Math.log(2));
}

这段代码片段的思想是用maxLength(即底线的长度)除以每一行的元素数量来得到块宽度。然后把元素放在每个块的中间。

参数minWidth表示底部行中块的长度。

用一张图片来说明想法并展示结果。