有了一个点列表,我如何确定它们是否是顺时针顺序的?

例如:

point[0] = (5,0)
point[1] = (6,4)
point[2] = (4,5)
point[3] = (1,5)
point[4] = (1,0)

会说它是逆时针的(对某些人来说是逆时针的)


当前回答

以下是基于上述答案的swift 3.0解决方案:

    for (i, point) in allPoints.enumerated() {
        let nextPoint = i == allPoints.count - 1 ? allPoints[0] : allPoints[i+1]
        signedArea += (point.x * nextPoint.y - nextPoint.x * point.y)
    }

    let clockwise  = signedArea < 0

其他回答

这是我使用其他答案中的解释的解决方案:

def segments(poly):
    """A sequence of (x,y) numeric coordinates pairs """
    return zip(poly, poly[1:] + [poly[0]])

def check_clockwise(poly):
    clockwise = False
    if (sum(x0*y1 - x1*y0 for ((x0, y0), (x1, y1)) in segments(poly))) < 0:
        clockwise = not clockwise
    return clockwise

poly = [(2,2),(6,2),(6,6),(2,6)]
check_clockwise(poly)
False

poly = [(2, 6), (6, 6), (6, 2), (2, 2)]
check_clockwise(poly)
True

The cross product measures the degree of perpendicular-ness of two vectors. Imagine that each edge of your polygon is a vector in the x-y plane of a three-dimensional (3-D) xyz space. Then the cross product of two successive edges is a vector in the z-direction, (positive z-direction if the second segment is clockwise, minus z-direction if it's counter-clockwise). The magnitude of this vector is proportional to the sine of the angle between the two original edges, so it reaches a maximum when they are perpendicular, and tapers off to disappear when the edges are collinear (parallel).

因此,对于多边形的每个顶点(点),计算两条相邻边的叉乘大小:

Using your data:
point[0] = (5, 0)
point[1] = (6, 4)
point[2] = (4, 5)
point[3] = (1, 5)
point[4] = (1, 0)

把边连续地标为 edgeA是从point0到point1的段 点1到点2之间的edgeB ... edgeE在point4和point0之间。

那么顶点A (point0)在两者之间 edgeE[从点4到点0] 从point0到' point1'

这两条边本身就是向量,它们的x坐标和y坐标可以通过减去它们的起点和终点的坐标来确定:

edgeE = point0 - point4 = (1,0) - (5,0) = (- 4,0) and edgeA = point1 - point0 = (6,4) - (1,0) = (5,4) and

这两个相邻边的外积是用下面矩阵的行列式来计算的,这个矩阵是通过将两个向量的坐标放在表示三个坐标轴的符号(i, j, & k)下面来构造的。第三个(零)值坐标在那里,因为外积概念是一个三维结构,所以我们将这些2-D向量扩展到3-D,以便应用外积:

 i    j    k 
-4    0    0
 1    4    0    

假设所有的叉乘都产生一个垂直于两个向量相乘平面的向量,上面矩阵的行列式只有一个k(或z轴)分量。 计算k轴或z轴分量大小的公式为 A1 *b2 - a2*b1 = -4* 4 - 0* 1 = -16

这个值的大小(-16)是两个原始向量夹角的正弦值,乘以两个向量大小的乘积。 实际上,它值的另一个公式是 A X B(叉乘)= |A| * |B| * sin(AB)。

为了得到角度的大小你需要用这个值(-16)除以两个向量大小的乘积。

|A| * |B| = 4 *根号(17)= 16.4924…

所以sin(AB) = -16 / 16.4924 = -.97014…

这是一个度量顶点后的下一段是否向左或向右弯曲,以及弯曲的程度。不需要取arcsin函数。我们只关心它的大小,当然还有它的符号(正的还是负的)!

对闭合路径周围的其他4个点都这样做,并将每个顶点的计算值相加。

如果最终的和是正的,就顺时针,负的,逆时针。

我认为为了使某些点顺时针方向,所有的边都必须是正的而不仅仅是边的和。如果一条边是负的,则逆时针方向给出至少3个点。

下面是一个基于@Beta答案的算法的简单c#实现。

让我们假设我们有一个Vector类型,它的X和Y属性为double类型。

public bool IsClockwise(IList<Vector> vertices)
{
    double sum = 0.0;
    for (int i = 0; i < vertices.Count; i++) {
        Vector v1 = vertices[i];
        Vector v2 = vertices[(i + 1) % vertices.Count];
        sum += (v2.X - v1.X) * (v2.Y + v1.Y);
    }
    return sum > 0.0;
}

%是执行模运算的模运算符或余数运算符,该运算符(根据维基百科)在一个数除以另一个数后求余数。


根据@MichelRouzic评论的优化版本:

double sum = 0.0;
Vector v1 = vertices[vertices.Count - 1]; // or vertices[^1] with
                                          // C# 8.0+ and .NET Core
for (int i = 0; i < vertices.Count; i++) {
    Vector v2 = vertices[i];
    sum += (v2.X - v1.X) * (v2.Y + v1.Y);
    v1 = v2;
}
return sum > 0.0;

这不仅节省了模运算%,还节省了数组索引。


测试(参见与@WDUK的讨论)

public static bool IsClockwise(IList<(double X, double Y)> vertices)
{
    double sum = 0.0;
    var v1 = vertices[^1];
    for (int i = 0; i < vertices.Count; i++) {
        var v2 = vertices[i];
        sum += (v2.X - v1.X) * (v2.Y + v1.Y);
        Console.WriteLine($"(({v2.X,2}) - ({v1.X,2})) * (({v2.Y,2}) + ({v1.Y,2})) = {(v2.X - v1.X) * (v2.Y + v1.Y)}");
        v1 = v2;
    }
    Console.WriteLine(sum);
    return sum > 0.0;
}

public static void Test()
{
    Console.WriteLine(IsClockwise(new[] { (-5.0, -5.0), (-5.0, 5.0), (5.0, 5.0), (5.0, -5.0) }));

    // infinity Symbol
    //Console.WriteLine(IsClockwise(new[] { (-5.0, -5.0), (-5.0, 5.0), (5.0, -5.0), (5.0, 5.0) }));
}

虽然这些答案是正确的,但它们在数学上的强度比必要的要大。假设地图坐标,其中最北的点是地图上的最高点。找到最北的点,如果两个点相等,它是最北的,然后是最东的(这是lhf在他的答案中使用的点)。在你的观点中,

点[0]= (5,0)

点[1]= (6,4)

点[2]= (4,5)

点[3]= (1,5)

点[4]= (1,0)

If we assume that P2 is the most north then east point either the previous or next point determine clockwise, CW, or CCW. Since the most north point is on the north face, if the P1 (previous) to P2 moves east the direction is CW. In this case, it moves west, so the direction is CCW as the accepted answer says. If the previous point has no horizontal movement, then the same system applies to the next point, P3. If P3 is west of P2, it is, then the movement is CCW. If the P2 to P3 movement is east, it's west in this case, the movement is CW. Assume that nte, P2 in your data, is the most north then east point and the prv is the previous point, P1 in your data, and nxt is the next point, P3 in your data, and [0] is horizontal or east/west where west is less than east, and [1] is vertical.

if (nte[0] >= prv[0] && nxt[0] >= nte[0]) return(CW);
if (nte[0] <= prv[0] && nxt[0] <= nte[0]) return(CCW);
// Okay, it's not easy-peasy, so now, do the math
if (nte[0] * nxt[1] - nte[1] * nxt[0] - prv[0] * (nxt[1] - crt[1]) + prv[1] * (nxt[0] - nte[0]) >= 0) return(CCW); // For quadrant 3 return(CW)
return(CW) // For quadrant 3 return (CCW)