我一直认为std::vector是“作为数组实现的”,等等等等。今天我去测试了一下,结果似乎不是这样:

以下是一些测试结果:

UseArray completed in 2.619 seconds
UseVector completed in 9.284 seconds
UseVectorPushBack completed in 14.669 seconds
The whole thing completed in 26.591 seconds

这大约要慢3 - 4倍!这并不能证明“向量可能会慢几纳秒”的评论是正确的。

我使用的代码是:

#include <cstdlib>
#include <vector>

#include <iostream>
#include <string>

#include <boost/date_time/posix_time/ptime.hpp>
#include <boost/date_time/microsec_time_clock.hpp>

class TestTimer
{
    public:
        TestTimer(const std::string & name) : name(name),
            start(boost::date_time::microsec_clock<boost::posix_time::ptime>::local_time())
        {
        }

        ~TestTimer()
        {
            using namespace std;
            using namespace boost;

            posix_time::ptime now(date_time::microsec_clock<posix_time::ptime>::local_time());
            posix_time::time_duration d = now - start;

            cout << name << " completed in " << d.total_milliseconds() / 1000.0 <<
                " seconds" << endl;
        }

    private:
        std::string name;
        boost::posix_time::ptime start;
};

struct Pixel
{
    Pixel()
    {
    }

    Pixel(unsigned char r, unsigned char g, unsigned char b) : r(r), g(g), b(b)
    {
    }

    unsigned char r, g, b;
};

void UseVector()
{
    TestTimer t("UseVector");

    for(int i = 0; i < 1000; ++i)
    {
        int dimension = 999;

        std::vector<Pixel> pixels;
        pixels.resize(dimension * dimension);

        for(int i = 0; i < dimension * dimension; ++i)
        {
            pixels[i].r = 255;
            pixels[i].g = 0;
            pixels[i].b = 0;
        }
    }
}

void UseVectorPushBack()
{
    TestTimer t("UseVectorPushBack");

    for(int i = 0; i < 1000; ++i)
    {
        int dimension = 999;

        std::vector<Pixel> pixels;
            pixels.reserve(dimension * dimension);

        for(int i = 0; i < dimension * dimension; ++i)
            pixels.push_back(Pixel(255, 0, 0));
    }
}

void UseArray()
{
    TestTimer t("UseArray");

    for(int i = 0; i < 1000; ++i)
    {
        int dimension = 999;

        Pixel * pixels = (Pixel *)malloc(sizeof(Pixel) * dimension * dimension);

        for(int i = 0 ; i < dimension * dimension; ++i)
        {
            pixels[i].r = 255;
            pixels[i].g = 0;
            pixels[i].b = 0;
        }

        free(pixels);
    }
}

int main()
{
    TestTimer t1("The whole thing");

    UseArray();
    UseVector();
    UseVectorPushBack();

    return 0;
}

我做错了吗?还是我刚刚打破了这个性能神话?

我使用Visual Studio 2005中的发布模式。


在Visual c++中,#define _SECURE_SCL 0将UseVector减少了一半(减少到4秒)。在我看来,这真的是件大事。


当前回答

这是一个古老而流行的问题。

在这一点上,许多程序员将使用c++ 11。在c++ 11中,OP的代码对于UseArray或UseVector运行得同样快。

UseVector completed in 3.74482 seconds
UseArray completed in 3.70414 seconds

基本的问题是,当你的像素结构未初始化时,std::vector<T>::resize(size_t, T const&=T())接受一个默认构造的像素并复制它。编译器没有注意到它被要求复制未初始化的数据,所以它实际执行了复制。

在c++ 11中,std::vector<T>::resize有两个重载。第一个是std::vector<T>::resize(size_t),另一个是std::vector<T>::resize(size_t, T const&)。这意味着当调用resize而不带第二个参数时,它只是默认构造,而编译器足够聪明,可以意识到默认构造什么也不做,因此它跳过了缓冲区的传递。

(添加这两个重载是为了处理可移动、可构造和不可复制类型——处理未初始化数据时的性能提升是一个额外的好处)。

push_back解决方案还执行fencepost检查,这降低了它的速度,因此它仍然比malloc版本慢。

现场示例(我还用chrono::high_resolution_clock替换了计时器)。

注意,如果你有一个通常需要初始化的结构,但你想在增加缓冲区后处理它,你可以使用自定义std::vector分配器来做到这一点。如果你想把它移动到一个更正常的std::vector,我相信仔细使用allocator_traits和重写==可能会成功,但我不确定。

其他回答

一些分析器数据(像素对齐为32位):

g++ -msse3 -O3 -ftree-vectorize -g test.cpp -DNDEBUG && ./a.out
UseVector completed in 3.123 seconds
UseArray completed in 1.847 seconds
UseVectorPushBack completed in 9.186 seconds
The whole thing completed in 14.159 seconds

Blah

andrey@nv:~$ opannotate --source libcchem/src/a.out  | grep "Total samples for file" -A3
Overflow stats not available
 * Total samples for file : "/usr/include/c++/4.4/ext/new_allocator.h"
 *
 * 141008 52.5367
 */
--
 * Total samples for file : "/home/andrey/libcchem/src/test.cpp"
 *
 *  61556 22.9345
 */
--
 * Total samples for file : "/usr/include/c++/4.4/bits/stl_vector.h"
 *
 *  41956 15.6320
 */
--
 * Total samples for file : "/usr/include/c++/4.4/bits/stl_uninitialized.h"
 *
 *  20956  7.8078
 */
--
 * Total samples for file : "/usr/include/c++/4.4/bits/stl_construct.h"
 *
 *   2923  1.0891
 */

在分配器:

               :      // _GLIBCXX_RESOLVE_LIB_DEFECTS
               :      // 402. wrong new expression in [some_] allocator::construct
               :      void
               :      construct(pointer __p, const _Tp& __val)
141008 52.5367 :      { ::new((void *)__p) _Tp(__val); }

向量:

               :void UseVector()
               :{ /* UseVector() total:  60121 22.3999 */
...
               :
               :
 10790  4.0201 :        for (int i = 0; i < dimension * dimension; ++i) {
               :
   495  0.1844 :            pixels[i].r = 255;
               :
 12618  4.7012 :            pixels[i].g = 0;
               :
  2253  0.8394 :            pixels[i].b = 0;
               :
               :        }

数组

               :void UseArray()
               :{ /* UseArray() total:  35191 13.1114 */
               :
...
               :
   136  0.0507 :        for (int i = 0; i < dimension * dimension; ++i) {
               :
  9897  3.6874 :            pixels[i].r = 255;
               :
  3511  1.3081 :            pixels[i].g = 0;
               :
 21647  8.0652 :            pixels[i].b = 0;

大部分开销都在复制构造函数中。例如,

    std::vector < Pixel > pixels;//(dimension * dimension, Pixel());

    pixels.reserve(dimension * dimension);

    for (int i = 0; i < dimension * dimension; ++i) {

        pixels[i].r = 255;

        pixels[i].g = 0;

        pixels[i].b = 0;
    }

它具有与数组相同的性能。

这是一个古老而流行的问题。

在这一点上,许多程序员将使用c++ 11。在c++ 11中,OP的代码对于UseArray或UseVector运行得同样快。

UseVector completed in 3.74482 seconds
UseArray completed in 3.70414 seconds

基本的问题是,当你的像素结构未初始化时,std::vector<T>::resize(size_t, T const&=T())接受一个默认构造的像素并复制它。编译器没有注意到它被要求复制未初始化的数据,所以它实际执行了复制。

在c++ 11中,std::vector<T>::resize有两个重载。第一个是std::vector<T>::resize(size_t),另一个是std::vector<T>::resize(size_t, T const&)。这意味着当调用resize而不带第二个参数时,它只是默认构造,而编译器足够聪明,可以意识到默认构造什么也不做,因此它跳过了缓冲区的传递。

(添加这两个重载是为了处理可移动、可构造和不可复制类型——处理未初始化数据时的性能提升是一个额外的好处)。

push_back解决方案还执行fencepost检查,这降低了它的速度,因此它仍然比malloc版本慢。

现场示例(我还用chrono::high_resolution_clock替换了计时器)。

注意,如果你有一个通常需要初始化的结构,但你想在增加缓冲区后处理它,你可以使用自定义std::vector分配器来做到这一点。如果你想把它移动到一个更正常的std::vector,我相信仔细使用allocator_traits和重写==可能会成功,但我不确定。

顺便说一下,你在使用vector的类中看到的减速也发生在标准类型中,比如int。这是一个多线程代码:

#include <iostream>
#include <cstdio>
#include <map>
#include <string>
#include <typeinfo>
#include <vector>
#include <pthread.h>
#include <sstream>
#include <fstream>
using namespace std;

//pthread_mutex_t map_mutex=PTHREAD_MUTEX_INITIALIZER;

long long num=500000000;
int procs=1;

struct iterate
{
    int id;
    int num;
    void * member;
    iterate(int a, int b, void *c) : id(a), num(b), member(c) {}
};

//fill out viterate and piterate
void * viterate(void * input)
{
    printf("am in viterate\n");
    iterate * info=static_cast<iterate *> (input);
    // reproduce member type
    vector<int> test= *static_cast<vector<int>*> (info->member);
    for (int i=info->id; i<test.size(); i+=info->num)
    {
        //printf("am in viterate loop\n");
        test[i];
    }
    pthread_exit(NULL);
}

void * piterate(void * input)
{
    printf("am in piterate\n");
    iterate * info=static_cast<iterate *> (input);;
    int * test=static_cast<int *> (info->member);
    for (int i=info->id; i<num; i+=info->num) {
        //printf("am in piterate loop\n");
        test[i];
    }
    pthread_exit(NULL);
}

int main()
{
    cout<<"producing vector of size "<<num<<endl;
    vector<int> vtest(num);
    cout<<"produced  a vector of size "<<vtest.size()<<endl;
    pthread_t thread[procs];

    iterate** it=new iterate*[procs];
    int ans;
    void *status;

    cout<<"begining to thread through the vector\n";
    for (int i=0; i<procs; i++) {
        it[i]=new iterate(i, procs, (void *) &vtest);
    //  ans=pthread_create(&thread[i],NULL,viterate, (void *) it[i]);
    }
    for (int i=0; i<procs; i++) {
        pthread_join(thread[i], &status);
    }
    cout<<"end of threading through the vector";
    //reuse the iterate structures

    cout<<"producing a pointer with size "<<num<<endl;
    int * pint=new int[num];
    cout<<"produced a pointer with size "<<num<<endl;

    cout<<"begining to thread through the pointer\n";
    for (int i=0; i<procs; i++) {
        it[i]->member=&pint;
        ans=pthread_create(&thread[i], NULL, piterate, (void*) it[i]);
    }
    for (int i=0; i<procs; i++) {
        pthread_join(thread[i], &status);
    }
    cout<<"end of threading through the pointer\n";

    //delete structure array for iterate
    for (int i=0; i<procs; i++) {
        delete it[i];
    }
    delete [] it;

    //delete pointer
    delete [] pint;

    cout<<"end of the program"<<endl;
    return 0;
}

代码中的行为表明vector的实例化是代码中最长的部分。一旦你通过瓶颈。其余的代码运行得非常快。无论在多少个线程上运行,这都是正确的。

顺便说一下,忽略那些疯狂的包含数。我一直在使用这段代码来测试一个项目的东西,所以包含的数量不断增长。

我只是想提一下vector(和smart_ptr)只是原始数组(和原始指针)上的一个薄层。 实际上在连续存储器中向量的访问时间比数组快。 下面的代码显示了初始化和访问向量和数组的结果。

#include <boost/date_time/posix_time/posix_time.hpp>
#include <iostream>
#include <vector>
#define SIZE 20000
int main() {
    srand (time(NULL));
    vector<vector<int>> vector2d;
    vector2d.reserve(SIZE);
    int index(0);
    boost::posix_time::ptime start_total = boost::posix_time::microsec_clock::local_time();
    //  timer start - build + access
    for (int i = 0; i < SIZE; i++) {
        vector2d.push_back(vector<int>(SIZE));
    }
    boost::posix_time::ptime start_access = boost::posix_time::microsec_clock::local_time();
    //  timer start - access
    for (int i = 0; i < SIZE; i++) {
        index = rand()%SIZE;
        for (int j = 0; j < SIZE; j++) {

            vector2d[index][index]++;
        }
    }
    boost::posix_time::ptime end = boost::posix_time::microsec_clock::local_time();
    boost::posix_time::time_duration msdiff = end - start_total;
    cout << "Vector total time: " << msdiff.total_milliseconds() << "milliseconds.\n";
    msdiff = end - start_acess;
    cout << "Vector access time: " << msdiff.total_milliseconds() << "milliseconds.\n"; 


    int index(0);
    int** raw2d = nullptr;
    raw2d = new int*[SIZE];
    start_total = boost::posix_time::microsec_clock::local_time();
    //  timer start - build + access
    for (int i = 0; i < SIZE; i++) {
        raw2d[i] = new int[SIZE];
    }
    start_access = boost::posix_time::microsec_clock::local_time();
    //  timer start - access
    for (int i = 0; i < SIZE; i++) {
        index = rand()%SIZE;
        for (int j = 0; j < SIZE; j++) {

            raw2d[index][index]++;
        }
    }
    end = boost::posix_time::microsec_clock::local_time();
    msdiff = end - start_total;
    cout << "Array total time: " << msdiff.total_milliseconds() << "milliseconds.\n";
    msdiff = end - start_acess;
    cout << "Array access time: " << msdiff.total_milliseconds() << "milliseconds.\n"; 
    for (int i = 0; i < SIZE; i++) {
        delete [] raw2d[i];
    }
    return 0;
}

输出结果为:

    Vector total time: 925milliseconds.
    Vector access time: 4milliseconds.
    Array total time: 30milliseconds.
    Array access time: 21milliseconds.

所以如果使用得当,速度几乎是一样的。 (正如其他人提到的使用reserve()或resize())。

我做了一些长期以来一直想做的广泛测试。不妨分享一下。

这是我的双启动机i7-3770, 16GB Ram, x86_64, Windows 8.1和Ubuntu 16.04。更多信息和结论,备注如下。测试了MSVS 2017和g++(在Windows和Linux上)。

测试程序

#include <iostream>
#include <chrono>
//#include <algorithm>
#include <array>
#include <locale>
#include <vector>
#include <queue>
#include <deque>

// Note: total size of array must not exceed 0x7fffffff B = 2,147,483,647B
//  which means that largest int array size is 536,870,911
// Also image size cannot be larger than 80,000,000B
constexpr int long g_size = 100000;
int g_A[g_size];


int main()
{
    std::locale loc("");
    std::cout.imbue(loc);
    constexpr int long size = 100000;  // largest array stack size

    // stack allocated c array
    std::chrono::steady_clock::time_point start = std::chrono::steady_clock::now();
    int A[size];
    for (int i = 0; i < size; i++)
        A[i] = i;

    auto duration = std::chrono::duration_cast<std::chrono::microseconds>(std::chrono::steady_clock::now() - start).count();
    std::cout << "c-style stack array duration=" << duration / 1000.0 << "ms\n";
    std::cout << "c-style stack array size=" << sizeof(A) << "B\n\n";

    // global stack c array
    start = std::chrono::steady_clock::now();
    for (int i = 0; i < g_size; i++)
        g_A[i] = i;

    duration = std::chrono::duration_cast<std::chrono::microseconds>(std::chrono::steady_clock::now() - start).count();
    std::cout << "global c-style stack array duration=" << duration / 1000.0 << "ms\n";
    std::cout << "global c-style stack array size=" << sizeof(g_A) << "B\n\n";

    // raw c array heap array
    start = std::chrono::steady_clock::now();
    int* AA = new int[size];    // bad_alloc() if it goes higher than 1,000,000,000
    for (int i = 0; i < size; i++)
        AA[i] = i;

    duration = std::chrono::duration_cast<std::chrono::microseconds>(std::chrono::steady_clock::now() - start).count();
    std::cout << "c-style heap array duration=" << duration / 1000.0 << "ms\n";
    std::cout << "c-style heap array size=" << sizeof(AA) << "B\n\n";
    delete[] AA;

    // std::array<>
    start = std::chrono::steady_clock::now();
    std::array<int, size> AAA;
    for (int i = 0; i < size; i++)
        AAA[i] = i;
    //std::sort(AAA.begin(), AAA.end());

    duration = std::chrono::duration_cast<std::chrono::microseconds>(std::chrono::steady_clock::now() - start).count();
    std::cout << "std::array duration=" << duration / 1000.0 << "ms\n";
    std::cout << "std::array size=" << sizeof(AAA) << "B\n\n";

    // std::vector<>
    start = std::chrono::steady_clock::now();
    std::vector<int> v;
    for (int i = 0; i < size; i++)
        v.push_back(i);
    //std::sort(v.begin(), v.end());

    duration = std::chrono::duration_cast<std::chrono::microseconds>(std::chrono::steady_clock::now() - start).count();
    std::cout << "std::vector duration=" << duration / 1000.0 << "ms\n";
    std::cout << "std::vector size=" << v.size() * sizeof(v.back()) << "B\n\n";

    // std::deque<>
    start = std::chrono::steady_clock::now();
    std::deque<int> dq;
    for (int i = 0; i < size; i++)
        dq.push_back(i);
    //std::sort(dq.begin(), dq.end());

    duration = std::chrono::duration_cast<std::chrono::microseconds>(std::chrono::steady_clock::now() - start).count();
    std::cout << "std::deque duration=" << duration / 1000.0 << "ms\n";
    std::cout << "std::deque size=" << dq.size() * sizeof(dq.back()) << "B\n\n";

    // std::queue<>
    start = std::chrono::steady_clock::now();
    std::queue<int> q;
    for (int i = 0; i < size; i++)
        q.push(i);

    duration = std::chrono::duration_cast<std::chrono::microseconds>(std::chrono::steady_clock::now() - start).count();
    std::cout << "std::queue duration=" << duration / 1000.0 << "ms\n";
    std::cout << "std::queue size=" << q.size() * sizeof(q.front()) << "B\n\n";
}

结果

//////////////////////////////////////////////////////////////////////////////////////////
// with MSVS 2017:
// >> cl /std:c++14 /Wall -O2 array_bench.cpp
//
// c-style stack array duration=0.15ms
// c-style stack array size=400,000B
//
// global c-style stack array duration=0.130ms
// global c-style stack array size=400,000B
//
// c-style heap array duration=0.90ms
// c-style heap array size=4B
//
// std::array duration=0.20ms
// std::array size=400,000B
//
// std::vector duration=0.544ms
// std::vector size=400,000B
//
// std::deque duration=1.375ms
// std::deque size=400,000B
//
// std::queue duration=1.491ms
// std::queue size=400,000B
//
//////////////////////////////////////////////////////////////////////////////////////////
//
// with g++ version:
//      - (tdm64-1) 5.1.0 on Windows
//      - (Ubuntu 5.4.0-6ubuntu1~16.04.10) 5.4.0 20160609 on Ubuntu 16.04
// >> g++ -std=c++14 -Wall -march=native -O2 array_bench.cpp -o array_bench
//
// c-style stack array duration=0ms
// c-style stack array size=400,000B
//
// global c-style stack array duration=0.124ms
// global c-style stack array size=400,000B
//
// c-style heap array duration=0.648ms
// c-style heap array size=8B
//
// std::array duration=1ms
// std::array size=400,000B
//
// std::vector duration=0.402ms
// std::vector size=400,000B
//
// std::deque duration=0.234ms
// std::deque size=400,000B
//
// std::queue duration=0.304ms
// std::queue size=400,000
//
//////////////////////////////////////////////////////////////////////////////////////////

笔记

平均10次组装。 我最初也使用std::sort()执行测试(您可以看到它被注释掉了),但后来删除了它们,因为没有显著的相对差异。

我的结论和评论

notice how global c-style array takes almost as much time as the heap c-style array Out of all tests I noticed a remarkable stability in std::array's time variations between consecutive runs, while others especially std:: data structs varied wildly in comparison O3 optimization didn't show any noteworthy time differences Removing optimization on Windows cl (no -O2) and on g++ (Win/Linux no -O2, no -march=native) increases times SIGNIFICANTLY. Particularly for std::data structs. Overall higher times on MSVS than g++, but std::array and c-style arrays faster on Windows without optimization g++ produces faster code than microsoft's compiler (apparently it runs faster even on Windows).

判决

当然,这是用于优化构建的代码。既然问题是关于std::vector,那么是的,它是!比普通数组(优化/未优化)慢。但是当您进行基准测试时,您自然希望生成优化的代码。

对我来说,这个节目的明星是std::array。