根据Learning Spark

请记住,重新划分数据是一项相当昂贵的操作。 Spark还有一个repartition()的优化版本,称为coalesce(),它允许避免数据移动,但仅当您正在减少RDD分区的数量时。

我得到的一个区别是,使用repartition()可以增加/减少分区的数量,但使用coalesce()只能减少分区的数量。

如果分区分布在多台机器上,并且运行了coalesce(),它如何避免数据移动?


当前回答

用一种简单的方式 COALESCE:-仅用于减少分区数量,没有数据变换,它只是压缩分区

REPARTITION:-用于增加和减少分区的数量,但会发生洗牌

例子:-

val rdd = sc.textFile("path",7)
rdd.repartition(10)
rdd.repartition(2)

两者都很好

但是当我们需要在一个集群中看到输出时,我们通常会选择这两个。

其他回答

我想在贾斯汀和鲍尔的回答中补充一点——

重新分区将忽略现有分区并创建新分区。所以你可以用它来修复数据倾斜。您可以使用分区键来定义分布。数据倾斜是“大数据”问题空间中最大的问题之一。

Coalesce将使用现有分区并对其中的一个子集进行洗牌。它不能像重新分区那样修复数据倾斜。因此,即使它更便宜,它也可能不是你需要的东西。

但是你也应该确保,如果你在处理巨大的数据,将要合并的节点的数据应该是高度配置的。因为所有的数据都会加载到那些节点上,可能会导致内存异常。 虽然赔款很贵,但我还是愿意用它。因为它对数据进行了洗牌和平均分配。

在合并和重新分区之间进行明智的选择。

合并比重新分区执行得更好。合并总是减少分区。假设你在yarn中启用动态分配,你有四个分区和执行器。如果过滤器应用于它,超过可能的一个或多个执行程序是空的,没有数据。这个问题可以通过合并而不是重新划分来解决。

对于那些从PySpark (AWS EMR)生成单个csv文件并将其保存在s3上的问题,使用重新分区会有所帮助。原因是,合并不能进行完全洗牌,但重新分区可以。从本质上讲,您可以使用重分区增加或减少分区的数量,但使用合并只能减少分区的数量(而不是1)。以下是为试图从AWS EMR写入csv到s3的任何人编写的代码:

df.repartition(1).write.format('csv')\
.option("path", "s3a://my.bucket.name/location")\
.save(header = 'true')

重分区算法对数据进行完全洗牌,并创建大小相等的数据分区。Coalesce结合现有分区以避免完全洗牌。

Coalesce可以很好地使用一个具有大量分区的RDD,并将单个工作节点上的分区组合在一起,以生成一个具有较少分区的最终RDD。

重新分区将重新洗牌RDD中的数据,以产生您请求的最终分区数量。 DataFrames的分区看起来像是一个应该由框架管理的低级实现细节,但事实并非如此。当将大的dataframe过滤成小的dataframe时,你应该总是对数据进行重新分区。 你可能会经常把大的数据帧过滤成小的数据帧,所以要习惯重新分区。

如果你想了解更多细节,请阅读这篇博客文章。