根据Learning Spark
请记住,重新划分数据是一项相当昂贵的操作。 Spark还有一个repartition()的优化版本,称为coalesce(),它允许避免数据移动,但仅当您正在减少RDD分区的数量时。
我得到的一个区别是,使用repartition()可以增加/减少分区的数量,但使用coalesce()只能减少分区的数量。
如果分区分布在多台机器上,并且运行了coalesce(),它如何避免数据移动?
根据Learning Spark
请记住,重新划分数据是一项相当昂贵的操作。 Spark还有一个repartition()的优化版本,称为coalesce(),它允许避免数据移动,但仅当您正在减少RDD分区的数量时。
我得到的一个区别是,使用repartition()可以增加/减少分区的数量,但使用coalesce()只能减少分区的数量。
如果分区分布在多台机器上,并且运行了coalesce(),它如何避免数据移动?
当前回答
用一种简单的方式 COALESCE:-仅用于减少分区数量,没有数据变换,它只是压缩分区
REPARTITION:-用于增加和减少分区的数量,但会发生洗牌
例子:-
val rdd = sc.textFile("path",7)
rdd.repartition(10)
rdd.repartition(2)
两者都很好
但是当我们需要在一个集群中看到输出时,我们通常会选择这两个。
其他回答
对于所有这些伟大的答案,我想补充的是,重新分区是利用数据并行化的最佳选择之一。而coalesce提供了一个廉价的选择来减少分区,并且在将数据写入HDFS或其他接收器以利用大写入时非常有用。
我发现这在以拼花格式写数据时很有用,可以充分利用它。
用一种简单的方式 COALESCE:-仅用于减少分区数量,没有数据变换,它只是压缩分区
REPARTITION:-用于增加和减少分区的数量,但会发生洗牌
例子:-
val rdd = sc.textFile("path",7)
rdd.repartition(10)
rdd.repartition(2)
两者都很好
但是当我们需要在一个集群中看到输出时,我们通常会选择这两个。
重新分区-建议在增加分区数量的同时使用它,因为它涉及到所有数据的洗牌。
Coalesce—建议在使用它的同时减少分区的数量。例如,如果你有3个分区,你想把它减少到2个,coalesce将把第3个分区的数据移动到分区1和分区2。分区1和分区2将保留在同一个容器中。 另一方面,重新分区将打乱所有分区中的数据,因此执行程序之间的网络使用将很高,这将影响性能。
在减少分区数量的同时,Coalesce比重分区的性能更好。
我想在贾斯汀和鲍尔的回答中补充一点——
重新分区将忽略现有分区并创建新分区。所以你可以用它来修复数据倾斜。您可以使用分区键来定义分布。数据倾斜是“大数据”问题空间中最大的问题之一。
Coalesce将使用现有分区并对其中的一个子集进行洗牌。它不能像重新分区那样修复数据倾斜。因此,即使它更便宜,它也可能不是你需要的东西。
所有的答案都为这个经常被问到的问题增添了一些伟大的知识。
所以根据这个问题的传统时间轴,这里是我的2美分。
我发现在非常具体的情况下,重新分区比合并更快。
在我的应用程序中,当我们估计的文件数量低于某个阈值时,重新分区工作得更快。
这就是我的意思
if(numFiles > 20)
df.coalesce(numFiles).write.mode(SaveMode.Overwrite).parquet(dest)
else
df.repartition(numFiles).write.mode(SaveMode.Overwrite).parquet(dest)
在上面的代码片段中,如果我的文件小于20,合并将永远无法完成,而重新分区要快得多,因此上面的代码。
当然,这个数字(20)将取决于工作人员的数量和数据量。
希望这能有所帮助。