根据Learning Spark

请记住,重新划分数据是一项相当昂贵的操作。 Spark还有一个repartition()的优化版本,称为coalesce(),它允许避免数据移动,但仅当您正在减少RDD分区的数量时。

我得到的一个区别是,使用repartition()可以增加/减少分区的数量,但使用coalesce()只能减少分区的数量。

如果分区分布在多台机器上,并且运行了coalesce(),它如何避免数据移动?


当前回答

它避免了完全洗牌。如果已知分区数量正在减少,则执行器可以安全地将数据保存在最小分区数量上,只将数据从额外的节点移到我们保留的节点上。

所以,它会是这样的:

Node 1 = 1,2,3
Node 2 = 4,5,6
Node 3 = 7,8,9
Node 4 = 10,11,12

然后合并到2个分区:

Node 1 = 1,2,3 + (10,11,12)
Node 3 = 7,8,9 + (4,5,6)

注意,节点1和节点3不需要移动其原始数据。

其他回答

我想在贾斯汀和鲍尔的回答中补充一点——

重新分区将忽略现有分区并创建新分区。所以你可以用它来修复数据倾斜。您可以使用分区键来定义分布。数据倾斜是“大数据”问题空间中最大的问题之一。

Coalesce将使用现有分区并对其中的一个子集进行洗牌。它不能像重新分区那样修复数据倾斜。因此,即使它更便宜,它也可能不是你需要的东西。

基本上,重分区允许您增加或减少分区的数量。重分区重新分配来自所有分区的数据,这导致完全shuffle,这是非常昂贵的操作。

Coalesce是重新分区的优化版本,您只能减少分区的数量。由于我们只能减少分区的数量,它所做的是将一些分区合并为一个分区。通过合并分区,与重新分区相比,跨分区的数据移动更低。所以在Coalesce中是最小的数据移动,但说Coalesce不做数据移动是完全错误的说法。

另一件事是通过提供分区的数量来重新分区,它试图在所有分区上均匀地重新分配数据而在Coalesce的情况下,在某些情况下我们仍然可能有倾斜的数据。

Coalesce使用现有分区来最小化数据量 被打乱。重新分区将创建新的分区并执行满分区 洗牌。 合并会产生具有不同数据量的分区 (有时分区有许多不同的大小)和 重新分区会产生大小大致相同的分区。 合并可以减少分区,但修复可以用来增加或减少分区。

联合——可以增加或减少分区 重新分区——只会增加分区

但是我想说性能纯粹是基于用例的。联合并不总是比重新划分好。

它避免了完全洗牌。如果已知分区数量正在减少,则执行器可以安全地将数据保存在最小分区数量上,只将数据从额外的节点移到我们保留的节点上。

所以,它会是这样的:

Node 1 = 1,2,3
Node 2 = 4,5,6
Node 3 = 7,8,9
Node 4 = 10,11,12

然后合并到2个分区:

Node 1 = 1,2,3 + (10,11,12)
Node 3 = 7,8,9 + (4,5,6)

注意,节点1和节点3不需要移动其原始数据。