根据Learning Spark

请记住,重新划分数据是一项相当昂贵的操作。 Spark还有一个repartition()的优化版本,称为coalesce(),它允许避免数据移动,但仅当您正在减少RDD分区的数量时。

我得到的一个区别是,使用repartition()可以增加/减少分区的数量,但使用coalesce()只能减少分区的数量。

如果分区分布在多台机器上,并且运行了coalesce(),它如何避免数据移动?


当前回答

基本上,重分区允许您增加或减少分区的数量。重分区重新分配来自所有分区的数据,这导致完全shuffle,这是非常昂贵的操作。

Coalesce是重新分区的优化版本,您只能减少分区的数量。由于我们只能减少分区的数量,它所做的是将一些分区合并为一个分区。通过合并分区,与重新分区相比,跨分区的数据移动更低。所以在Coalesce中是最小的数据移动,但说Coalesce不做数据移动是完全错误的说法。

另一件事是通过提供分区的数量来重新分区,它试图在所有分区上均匀地重新分配数据而在Coalesce的情况下,在某些情况下我们仍然可能有倾斜的数据。

其他回答

重新分区-建议在增加分区数量的同时使用它,因为它涉及到所有数据的洗牌。

Coalesce—建议在使用它的同时减少分区的数量。例如,如果你有3个分区,你想把它减少到2个,coalesce将把第3个分区的数据移动到分区1和分区2。分区1和分区2将保留在同一个容器中。 另一方面,重新分区将打乱所有分区中的数据,因此执行程序之间的网络使用将很高,这将影响性能。

在减少分区数量的同时,Coalesce比重分区的性能更好。

重分区算法对数据进行完全洗牌,并创建大小相等的数据分区。Coalesce结合现有分区以避免完全洗牌。

Coalesce可以很好地使用一个具有大量分区的RDD,并将单个工作节点上的分区组合在一起,以生成一个具有较少分区的最终RDD。

重新分区将重新洗牌RDD中的数据,以产生您请求的最终分区数量。 DataFrames的分区看起来像是一个应该由框架管理的低级实现细节,但事实并非如此。当将大的dataframe过滤成小的dataframe时,你应该总是对数据进行重新分区。 你可能会经常把大的数据帧过滤成小的数据帧,所以要习惯重新分区。

如果你想了解更多细节,请阅读这篇博客文章。

但是你也应该确保,如果你在处理巨大的数据,将要合并的节点的数据应该是高度配置的。因为所有的数据都会加载到那些节点上,可能会导致内存异常。 虽然赔款很贵,但我还是愿意用它。因为它对数据进行了洗牌和平均分配。

在合并和重新分区之间进行明智的选择。

所有的答案都为这个经常被问到的问题增添了一些伟大的知识。

所以根据这个问题的传统时间轴,这里是我的2美分。

我发现在非常具体的情况下,重新分区比合并更快。

在我的应用程序中,当我们估计的文件数量低于某个阈值时,重新分区工作得更快。

这就是我的意思

if(numFiles > 20)
    df.coalesce(numFiles).write.mode(SaveMode.Overwrite).parquet(dest)
else
    df.repartition(numFiles).write.mode(SaveMode.Overwrite).parquet(dest)

在上面的代码片段中,如果我的文件小于20,合并将永远无法完成,而重新分区要快得多,因此上面的代码。

当然,这个数字(20)将取决于工作人员的数量和数据量。

希望这能有所帮助。

对于那些从PySpark (AWS EMR)生成单个csv文件并将其保存在s3上的问题,使用重新分区会有所帮助。原因是,合并不能进行完全洗牌,但重新分区可以。从本质上讲,您可以使用重分区增加或减少分区的数量,但使用合并只能减少分区的数量(而不是1)。以下是为试图从AWS EMR写入csv到s3的任何人编写的代码:

df.repartition(1).write.format('csv')\
.option("path", "s3a://my.bucket.name/location")\
.save(header = 'true')