根据Learning Spark
请记住,重新划分数据是一项相当昂贵的操作。 Spark还有一个repartition()的优化版本,称为coalesce(),它允许避免数据移动,但仅当您正在减少RDD分区的数量时。
我得到的一个区别是,使用repartition()可以增加/减少分区的数量,但使用coalesce()只能减少分区的数量。
如果分区分布在多台机器上,并且运行了coalesce(),它如何避免数据移动?
根据Learning Spark
请记住,重新划分数据是一项相当昂贵的操作。 Spark还有一个repartition()的优化版本,称为coalesce(),它允许避免数据移动,但仅当您正在减少RDD分区的数量时。
我得到的一个区别是,使用repartition()可以增加/减少分区的数量,但使用coalesce()只能减少分区的数量。
如果分区分布在多台机器上,并且运行了coalesce(),它如何避免数据移动?
当前回答
基本上,重分区允许您增加或减少分区的数量。重分区重新分配来自所有分区的数据,这导致完全shuffle,这是非常昂贵的操作。
Coalesce是重新分区的优化版本,您只能减少分区的数量。由于我们只能减少分区的数量,它所做的是将一些分区合并为一个分区。通过合并分区,与重新分区相比,跨分区的数据移动更低。所以在Coalesce中是最小的数据移动,但说Coalesce不做数据移动是完全错误的说法。
另一件事是通过提供分区的数量来重新分区,它试图在所有分区上均匀地重新分配数据而在Coalesce的情况下,在某些情况下我们仍然可能有倾斜的数据。
其他回答
所有的答案都为这个经常被问到的问题增添了一些伟大的知识。
所以根据这个问题的传统时间轴,这里是我的2美分。
我发现在非常具体的情况下,重新分区比合并更快。
在我的应用程序中,当我们估计的文件数量低于某个阈值时,重新分区工作得更快。
这就是我的意思
if(numFiles > 20)
df.coalesce(numFiles).write.mode(SaveMode.Overwrite).parquet(dest)
else
df.repartition(numFiles).write.mode(SaveMode.Overwrite).parquet(dest)
在上面的代码片段中,如果我的文件小于20,合并将永远无法完成,而重新分区要快得多,因此上面的代码。
当然,这个数字(20)将取决于工作人员的数量和数据量。
希望这能有所帮助。
重新分区-建议在增加分区数量的同时使用它,因为它涉及到所有数据的洗牌。
Coalesce—建议在使用它的同时减少分区的数量。例如,如果你有3个分区,你想把它减少到2个,coalesce将把第3个分区的数据移动到分区1和分区2。分区1和分区2将保留在同一个容器中。 另一方面,重新分区将打乱所有分区中的数据,因此执行程序之间的网络使用将很高,这将影响性能。
在减少分区数量的同时,Coalesce比重分区的性能更好。
这里需要注意的一点是,Spark RDD的基本原则是不变性。重新分区或合并将创建新的RDD。基本RDD将继续存在其原始分区数量。如果用例要求将RDD持久化在缓存中,则必须对新创建的RDD进行同样的操作。
scala> pairMrkt.repartition(10)
res16: org.apache.spark.rdd.RDD[(String, Array[String])] =MapPartitionsRDD[11] at repartition at <console>:26
scala> res16.partitions.length
res17: Int = 10
scala> pairMrkt.partitions.length
res20: Int = 2
用一种简单的方式 COALESCE:-仅用于减少分区数量,没有数据变换,它只是压缩分区
REPARTITION:-用于增加和减少分区的数量,但会发生洗牌
例子:-
val rdd = sc.textFile("path",7)
rdd.repartition(10)
rdd.repartition(2)
两者都很好
但是当我们需要在一个集群中看到输出时,我们通常会选择这两个。
另一个不同之处是考虑到存在倾斜连接的情况,您必须在其之上进行合并。在大多数情况下,重新分区将解决倾斜连接,然后您可以进行合并。
另一种情况是,假设你在一个数据帧中保存了一个中等/大量的数据,你必须批量生成到Kafka。在某些情况下,在生成到Kafka之前,重新分区有助于collectasList。但是,当容量非常大时,重新分区可能会导致严重的性能影响。在这种情况下,直接从dataframe生成Kafka会有所帮助。
附注:Coalesce并不像在工作人员之间进行完整的数据移动那样避免数据移动。但它确实减少了洗牌的次数。我想这就是那本书的意思。