我需要写一个加权版的random。选择(列表中的每个元素有不同的被选择的概率)。这是我想到的:

def weightedChoice(choices):
    """Like random.choice, but each element can have a different chance of
    being selected.

    choices can be any iterable containing iterables with two items each.
    Technically, they can have more than two items, the rest will just be
    ignored.  The first item is the thing being chosen, the second item is
    its weight.  The weights can be any numeric values, what matters is the
    relative differences between them.
    """
    space = {}
    current = 0
    for choice, weight in choices:
        if weight > 0:
            space[current] = choice
            current += weight
    rand = random.uniform(0, current)
    for key in sorted(space.keys() + [current]):
        if rand < key:
            return choice
        choice = space[key]
    return None

这个函数对我来说太复杂了,而且很丑。我希望这里的每个人都能提供一些改进的建议或其他方法。对我来说,效率没有代码的整洁和可读性重要。


当前回答

另一种方法是,假设我们的权重与元素数组中的元素的下标相同。

import numpy as np
weights = [0.1, 0.3, 0.5] #weights for the item at index 0,1,2
# sum of weights should be <=1, you can also divide each weight by sum of all weights to standardise it to <=1 constraint.
trials = 1 #number of trials
num_item = 1 #number of items that can be picked in each trial
selected_item_arr = np.random.multinomial(num_item, weights, trials)
# gives number of times an item was selected at a particular index
# this assumes selection with replacement
# one possible output
# selected_item_arr
# array([[0, 0, 1]])
# say if trials = 5, the the possible output could be 
# selected_item_arr
# array([[1, 0, 0],
#   [0, 0, 1],
#   [0, 0, 1],
#   [0, 1, 0],
#   [0, 0, 1]])

现在我们假设,我们要在一次试验中抽取3个项目。你可以假设有三个球R、G、B大量存在,它们的权重由权重数组给定,可能的结果如下:

num_item = 3
trials = 1
selected_item_arr = np.random.multinomial(num_item, weights, trials)
# selected_item_arr can give output like :
# array([[1, 0, 2]])

您还可以将要选择的项目数量视为一组中二项/多项试验的数量。所以,上面的例子仍然可以作为工作

num_binomial_trial = 5
weights = [0.1,0.9] #say an unfair coin weights for H/T
num_experiment_set = 1
selected_item_arr = np.random.multinomial(num_binomial_trial, weights, num_experiment_set)
# possible output
# selected_item_arr
# array([[1, 4]])
# i.e H came 1 time and T came 4 times in 5 binomial trials. And one set contains 5 binomial trails.

其他回答

如果你碰巧有Python 3,并且害怕安装numpy或编写自己的循环,你可以这样做:

import itertools, bisect, random

def weighted_choice(choices):
   weights = list(zip(*choices))[1]
   return choices[bisect.bisect(list(itertools.accumulate(weights)),
                                random.uniform(0, sum(weights)))][0]

因为你可以用一袋管道适配器做任何东西!尽管……我必须承认,尼德的回答虽然稍长一些,但比较容易理解。

通解:

import random
def weighted_choice(choices, weights):
    total = sum(weights)
    treshold = random.uniform(0, total)
    for k, weight in enumerate(weights):
        total -= weight
        if total < treshold:
            return choices[k]

为random.choice()提供一个预先加权的列表:

解决方案和测试:

import random

options = ['a', 'b', 'c', 'd']
weights = [1, 2, 5, 2]

weighted_options = [[opt]*wgt for opt, wgt in zip(options, weights)]
weighted_options = [opt for sublist in weighted_options for opt in sublist]
print(weighted_options)

# test

counts = {c: 0 for c in options}
for x in range(10000):
    counts[random.choice(weighted_options)] += 1

for opt, wgt in zip(options, weights):
    wgt_r = counts[opt] / 10000 * sum(weights)
    print(opt, counts[opt], wgt, wgt_r)

输出:

['a', 'b', 'b', 'c', 'c', 'c', 'c', 'c', 'd', 'd']
a 1025 1 1.025
b 1948 2 1.948
c 5019 5 5.019
d 2008 2 2.008

如果你有一个加权字典而不是一个列表,你可以这样写

items = { "a": 10, "b": 5, "c": 1 } 
random.choice([k for k in items for dummy in range(items[k])])

注意(k, k范围的虚拟物品(物品[k])]产生这个列表(' a ', ' ', ' ', ' ', ' ', ' ', ' ', ' ', ' ', ' ', ' c ', ' b ', ' b ', ' b ', ' b ', ' b ']

使用numpy

def choice(items, weights):
    return items[np.argmin((np.cumsum(weights) / sum(weights)) < np.random.rand())]