我需要写一个加权版的random。选择(列表中的每个元素有不同的被选择的概率)。这是我想到的:

def weightedChoice(choices):
    """Like random.choice, but each element can have a different chance of
    being selected.

    choices can be any iterable containing iterables with two items each.
    Technically, they can have more than two items, the rest will just be
    ignored.  The first item is the thing being chosen, the second item is
    its weight.  The weights can be any numeric values, what matters is the
    relative differences between them.
    """
    space = {}
    current = 0
    for choice, weight in choices:
        if weight > 0:
            space[current] = choice
            current += weight
    rand = random.uniform(0, current)
    for key in sorted(space.keys() + [current]):
        if rand < key:
            return choice
        choice = space[key]
    return None

这个函数对我来说太复杂了,而且很丑。我希望这里的每个人都能提供一些改进的建议或其他方法。对我来说,效率没有代码的整洁和可读性重要。


当前回答

另一种方法是,假设我们的权重与元素数组中的元素的下标相同。

import numpy as np
weights = [0.1, 0.3, 0.5] #weights for the item at index 0,1,2
# sum of weights should be <=1, you can also divide each weight by sum of all weights to standardise it to <=1 constraint.
trials = 1 #number of trials
num_item = 1 #number of items that can be picked in each trial
selected_item_arr = np.random.multinomial(num_item, weights, trials)
# gives number of times an item was selected at a particular index
# this assumes selection with replacement
# one possible output
# selected_item_arr
# array([[0, 0, 1]])
# say if trials = 5, the the possible output could be 
# selected_item_arr
# array([[1, 0, 0],
#   [0, 0, 1],
#   [0, 0, 1],
#   [0, 1, 0],
#   [0, 0, 1]])

现在我们假设,我们要在一次试验中抽取3个项目。你可以假设有三个球R、G、B大量存在,它们的权重由权重数组给定,可能的结果如下:

num_item = 3
trials = 1
selected_item_arr = np.random.multinomial(num_item, weights, trials)
# selected_item_arr can give output like :
# array([[1, 0, 2]])

您还可以将要选择的项目数量视为一组中二项/多项试验的数量。所以,上面的例子仍然可以作为工作

num_binomial_trial = 5
weights = [0.1,0.9] #say an unfair coin weights for H/T
num_experiment_set = 1
selected_item_arr = np.random.multinomial(num_binomial_trial, weights, num_experiment_set)
# possible output
# selected_item_arr
# array([[1, 4]])
# i.e H came 1 time and T came 4 times in 5 binomial trials. And one set contains 5 binomial trails.

其他回答

加权选择的一个非常基本和简单的方法如下:

np.random.choice(['A', 'B', 'C'], p=[0.3, 0.4, 0.3])

如果您的加权选项列表是相对静态的,并且您希望频繁采样,则可以执行一个O(N)预处理步骤,然后使用相关答案中的函数在O(1)中进行选择。

# run only when `choices` changes.
preprocessed_data = prep(weight for _,weight in choices)

# O(1) selection
value = choices[sample(preprocessed_data)][0]

如果你有一个加权字典而不是一个列表,你可以这样写

items = { "a": 10, "b": 5, "c": 1 } 
random.choice([k for k in items for dummy in range(items[k])])

注意(k, k范围的虚拟物品(物品[k])]产生这个列表(' a ', ' ', ' ', ' ', ' ', ' ', ' ', ' ', ' ', ' ', ' c ', ' b ', ' b ', ' b ', ' b ', ' b ']

从版本1.7.0开始,NumPy有一个支持概率分布的选择函数。

from numpy.random import choice
draw = choice(list_of_candidates, number_of_items_to_pick,
              p=probability_distribution)

注意,probability_distribution是一个与list_of_candidate顺序相同的序列。您还可以使用关键字replace=False来更改行为,这样绘制的项就不会被替换。

从Python 3.6开始,随机模块中有一个方法选择。

In [1]: import random

In [2]: random.choices(
...:     population=[['a','b'], ['b','a'], ['c','b']],
...:     weights=[0.2, 0.2, 0.6],
...:     k=10
...: )

Out[2]:
[['c', 'b'],
 ['c', 'b'],
 ['b', 'a'],
 ['c', 'b'],
 ['c', 'b'],
 ['b', 'a'],
 ['c', 'b'],
 ['b', 'a'],
 ['c', 'b'],
 ['c', 'b']]

注意随机。选择将与替换样本,每个文档:

返回一个k大小的元素列表,这些元素是从替换的填充中选择的。

为确保回答的完整性,请注意:

当从一个有限的总体中抽取一个抽样单位并返回时 对于该种群,在其特征被记录下来之后, 在绘制下一个单元之前,采样被称为“与” 更换”。它基本上意味着每个元素可以被选择多于 一次。

如果您需要在不替换的情况下进行采样,那么就像@ronan-paixão的精彩回答所说的那样,您可以使用numpy。Choice,其replace参数控制这种行为。