我需要写一个加权版的random。选择(列表中的每个元素有不同的被选择的概率)。这是我想到的:
def weightedChoice(choices):
"""Like random.choice, but each element can have a different chance of
being selected.
choices can be any iterable containing iterables with two items each.
Technically, they can have more than two items, the rest will just be
ignored. The first item is the thing being chosen, the second item is
its weight. The weights can be any numeric values, what matters is the
relative differences between them.
"""
space = {}
current = 0
for choice, weight in choices:
if weight > 0:
space[current] = choice
current += weight
rand = random.uniform(0, current)
for key in sorted(space.keys() + [current]):
if rand < key:
return choice
choice = space[key]
return None
这个函数对我来说太复杂了,而且很丑。我希望这里的每个人都能提供一些改进的建议或其他方法。对我来说,效率没有代码的整洁和可读性重要。
假设你有
items = [11, 23, 43, 91]
probability = [0.2, 0.3, 0.4, 0.1]
你有一个函数,它生成一个介于[0,1)之间的随机数(我们可以在这里使用random.random())。
现在求概率的前缀和
prefix_probability=[0.2,0.5,0.9,1]
现在,我们只需取一个0-1之间的随机数,然后使用二分搜索来查找该数字在prefix_probability中的位置。这个索引就是你的答案
代码是这样的
return items[bisect.bisect(prefix_probability,random.random())]
我需要做这样的事情非常快速非常简单,从搜索的想法,我终于建立了这个模板。其思想是以json的形式从api接收加权值,这里是由dict模拟的。
然后将其转换为一个列表,其中每个值都与它的权重成比例地重复,只需使用random。选择从列表中选择一个值。
我尝试了10次、100次和1000次迭代。分布似乎很稳定。
def weighted_choice(weighted_dict):
"""Input example: dict(apples=60, oranges=30, pineapples=10)"""
weight_list = []
for key in weighted_dict.keys():
weight_list += [key] * weighted_dict[key]
return random.choice(weight_list)
为random.choice()提供一个预先加权的列表:
解决方案和测试:
import random
options = ['a', 'b', 'c', 'd']
weights = [1, 2, 5, 2]
weighted_options = [[opt]*wgt for opt, wgt in zip(options, weights)]
weighted_options = [opt for sublist in weighted_options for opt in sublist]
print(weighted_options)
# test
counts = {c: 0 for c in options}
for x in range(10000):
counts[random.choice(weighted_options)] += 1
for opt, wgt in zip(options, weights):
wgt_r = counts[opt] / 10000 * sum(weights)
print(opt, counts[opt], wgt, wgt_r)
输出:
['a', 'b', 'b', 'c', 'c', 'c', 'c', 'c', 'd', 'd']
a 1025 1 1.025
b 1948 2 1.948
c 5019 5 5.019
d 2008 2 2.008
粗糙的,但可能足够:
import random
weighted_choice = lambda s : random.choice(sum(([v]*wt for v,wt in s),[]))
这有用吗?
# define choices and relative weights
choices = [("WHITE",90), ("RED",8), ("GREEN",2)]
# initialize tally dict
tally = dict.fromkeys(choices, 0)
# tally up 1000 weighted choices
for i in xrange(1000):
tally[weighted_choice(choices)] += 1
print tally.items()
打印:
[('WHITE', 904), ('GREEN', 22), ('RED', 74)]
假设所有权重都是整数。它们的和不一定是100,我这么做只是为了让测试结果更容易理解。(如果权重是浮点数,则将它们都乘以10,直到所有权重>= 1。)
weights = [.6, .2, .001, .199]
while any(w < 1.0 for w in weights):
weights = [w*10 for w in weights]
weights = map(int, weights)