我需要写一个加权版的random。选择(列表中的每个元素有不同的被选择的概率)。这是我想到的:

def weightedChoice(choices):
    """Like random.choice, but each element can have a different chance of
    being selected.

    choices can be any iterable containing iterables with two items each.
    Technically, they can have more than two items, the rest will just be
    ignored.  The first item is the thing being chosen, the second item is
    its weight.  The weights can be any numeric values, what matters is the
    relative differences between them.
    """
    space = {}
    current = 0
    for choice, weight in choices:
        if weight > 0:
            space[current] = choice
            current += weight
    rand = random.uniform(0, current)
    for key in sorted(space.keys() + [current]):
        if rand < key:
            return choice
        choice = space[key]
    return None

这个函数对我来说太复杂了,而且很丑。我希望这里的每个人都能提供一些改进的建议或其他方法。对我来说,效率没有代码的整洁和可读性重要。


当前回答

通解:

import random
def weighted_choice(choices, weights):
    total = sum(weights)
    treshold = random.uniform(0, total)
    for k, weight in enumerate(weights):
        total -= weight
        if total < treshold:
            return choices[k]

其他回答

将权重排列成a 累积分布。 使用random.random()来选择一个随机的 浮点0.0 <= x < total。 搜索 用等分法进行分布。二等分的 如http://docs.python.org/dev/library/bisect.html#other-examples中的示例所示。

from random import random
from bisect import bisect

def weighted_choice(choices):
    values, weights = zip(*choices)
    total = 0
    cum_weights = []
    for w in weights:
        total += w
        cum_weights.append(total)
    x = random() * total
    i = bisect(cum_weights, x)
    return values[i]

>>> weighted_choice([("WHITE",90), ("RED",8), ("GREEN",2)])
'WHITE'

如果需要做出多个选择,可以将其分成两个函数,一个用于构建累积权重,另一个用于对随机点进行等分。

def weighted_choice(choices):
   total = sum(w for c, w in choices)
   r = random.uniform(0, total)
   upto = 0
   for c, w in choices:
      if upto + w >= r:
         return c
      upto += w
   assert False, "Shouldn't get here"

我看了指向的其他线程,并在我的编码风格中提出了这种变化,这返回了用于计数的索引,但返回字符串很简单(注释返回替代):

import random
import bisect

try:
    range = xrange
except:
    pass

def weighted_choice(choices):
    total, cumulative = 0, []
    for c,w in choices:
        total += w
        cumulative.append((total, c))
    r = random.uniform(0, total)
    # return index
    return bisect.bisect(cumulative, (r,))
    # return item string
    #return choices[bisect.bisect(cumulative, (r,))][0]

# define choices and relative weights
choices = [("WHITE",90), ("RED",8), ("GREEN",2)]

tally = [0 for item in choices]

n = 100000
# tally up n weighted choices
for i in range(n):
    tally[weighted_choice(choices)] += 1

print([t/sum(tally)*100 for t in tally])

我不喜欢它们的语法。我只想具体说明这些项目是什么以及每项的权重是多少。我意识到我可以用随机。选项,但我很快就写了下面的类。

import random, string
from numpy import cumsum

class randomChoiceWithProportions:
    '''
    Accepts a dictionary of choices as keys and weights as values. Example if you want a unfair dice:


    choiceWeightDic = {"1":0.16666666666666666, "2": 0.16666666666666666, "3": 0.16666666666666666
    , "4": 0.16666666666666666, "5": .06666666666666666, "6": 0.26666666666666666}
    dice = randomChoiceWithProportions(choiceWeightDic)

    samples = []
    for i in range(100000):
        samples.append(dice.sample())

    # Should be close to .26666
    samples.count("6")/len(samples)

    # Should be close to .16666
    samples.count("1")/len(samples)
    '''
    def __init__(self, choiceWeightDic):
        self.choiceWeightDic = choiceWeightDic
        weightSum = sum(self.choiceWeightDic.values())
        assert weightSum == 1, 'Weights sum to ' + str(weightSum) + ', not 1.'
        self.valWeightDict = self._compute_valWeights()

    def _compute_valWeights(self):
        valWeights = list(cumsum(list(self.choiceWeightDic.values())))
        valWeightDict = dict(zip(list(self.choiceWeightDic.keys()), valWeights))
        return valWeightDict

    def sample(self):
        num = random.uniform(0,1)
        for key, val in self.valWeightDict.items():
            if val >= num:
                return key

通解:

import random
def weighted_choice(choices, weights):
    total = sum(weights)
    treshold = random.uniform(0, total)
    for k, weight in enumerate(weights):
        total -= weight
        if total < treshold:
            return choices[k]