我需要写一个加权版的random。选择(列表中的每个元素有不同的被选择的概率)。这是我想到的:

def weightedChoice(choices):
    """Like random.choice, but each element can have a different chance of
    being selected.

    choices can be any iterable containing iterables with two items each.
    Technically, they can have more than two items, the rest will just be
    ignored.  The first item is the thing being chosen, the second item is
    its weight.  The weights can be any numeric values, what matters is the
    relative differences between them.
    """
    space = {}
    current = 0
    for choice, weight in choices:
        if weight > 0:
            space[current] = choice
            current += weight
    rand = random.uniform(0, current)
    for key in sorted(space.keys() + [current]):
        if rand < key:
            return choice
        choice = space[key]
    return None

这个函数对我来说太复杂了,而且很丑。我希望这里的每个人都能提供一些改进的建议或其他方法。对我来说,效率没有代码的整洁和可读性重要。


当前回答

在Udacity免费课程AI for Robotics中,Sebastien Thurn对此进行了演讲。基本上,他用mod运算符%做了一个权重索引的圆形数组,将变量beta设为0,随机选择一个索引, for循环遍历N,其中N是指标的数量,在for循环中,首先按公式增加beta:

Beta = Beta +来自{0…2 * Weight_max}

然后在for循环中嵌套一个while循环per:

while w[index] < beta:
    beta = beta - w[index]
    index = index + 1

select p[index]

然后到下一个索引,根据概率(或课程中介绍的情况下的归一化概率)重新采样。

在Udacity上找到第8课,机器人人工智能的第21期视频,他正在讲粒子滤波器。

其他回答

为random.choice()提供一个预先加权的列表:

解决方案和测试:

import random

options = ['a', 'b', 'c', 'd']
weights = [1, 2, 5, 2]

weighted_options = [[opt]*wgt for opt, wgt in zip(options, weights)]
weighted_options = [opt for sublist in weighted_options for opt in sublist]
print(weighted_options)

# test

counts = {c: 0 for c in options}
for x in range(10000):
    counts[random.choice(weighted_options)] += 1

for opt, wgt in zip(options, weights):
    wgt_r = counts[opt] / 10000 * sum(weights)
    print(opt, counts[opt], wgt, wgt_r)

输出:

['a', 'b', 'b', 'c', 'c', 'c', 'c', 'c', 'd', 'd']
a 1025 1 1.025
b 1948 2 1.948
c 5019 5 5.019
d 2008 2 2.008

从Python 3.6开始,随机模块中有一个方法选择。

In [1]: import random

In [2]: random.choices(
...:     population=[['a','b'], ['b','a'], ['c','b']],
...:     weights=[0.2, 0.2, 0.6],
...:     k=10
...: )

Out[2]:
[['c', 'b'],
 ['c', 'b'],
 ['b', 'a'],
 ['c', 'b'],
 ['c', 'b'],
 ['b', 'a'],
 ['c', 'b'],
 ['b', 'a'],
 ['c', 'b'],
 ['c', 'b']]

注意随机。选择将与替换样本,每个文档:

返回一个k大小的元素列表,这些元素是从替换的填充中选择的。

为确保回答的完整性,请注意:

当从一个有限的总体中抽取一个抽样单位并返回时 对于该种群,在其特征被记录下来之后, 在绘制下一个单元之前,采样被称为“与” 更换”。它基本上意味着每个元素可以被选择多于 一次。

如果您需要在不替换的情况下进行采样,那么就像@ronan-paixão的精彩回答所说的那样,您可以使用numpy。Choice,其replace参数控制这种行为。

加权选择的一个非常基本和简单的方法如下:

np.random.choice(['A', 'B', 'C'], p=[0.3, 0.4, 0.3])

我可能已经来不及提供任何有用的东西了,但这里有一个简单,简短,非常有效的片段:

def choose_index(probabilies):
    cmf = probabilies[0]
    choice = random.random()
    for k in xrange(len(probabilies)):
        if choice <= cmf:
            return k
        else:
            cmf += probabilies[k+1]

不需要排序你的概率或用你的cmf创建一个向量,它一旦找到它的选择就会终止。内存:O(1),时间:O(N),平均运行时间~ N/2。

如果你有权重,只需添加一行:

def choose_index(weights):
    probabilities = weights / sum(weights)
    cmf = probabilies[0]
    choice = random.random()
    for k in xrange(len(probabilies)):
        if choice <= cmf:
            return k
        else:
            cmf += probabilies[k+1]

我需要做这样的事情非常快速非常简单,从搜索的想法,我终于建立了这个模板。其思想是以json的形式从api接收加权值,这里是由dict模拟的。

然后将其转换为一个列表,其中每个值都与它的权重成比例地重复,只需使用random。选择从列表中选择一个值。

我尝试了10次、100次和1000次迭代。分布似乎很稳定。

def weighted_choice(weighted_dict):
    """Input example: dict(apples=60, oranges=30, pineapples=10)"""
    weight_list = []
    for key in weighted_dict.keys():
        weight_list += [key] * weighted_dict[key]
    return random.choice(weight_list)