我需要写一个加权版的random。选择(列表中的每个元素有不同的被选择的概率)。这是我想到的:

def weightedChoice(choices):
    """Like random.choice, but each element can have a different chance of
    being selected.

    choices can be any iterable containing iterables with two items each.
    Technically, they can have more than two items, the rest will just be
    ignored.  The first item is the thing being chosen, the second item is
    its weight.  The weights can be any numeric values, what matters is the
    relative differences between them.
    """
    space = {}
    current = 0
    for choice, weight in choices:
        if weight > 0:
            space[current] = choice
            current += weight
    rand = random.uniform(0, current)
    for key in sorted(space.keys() + [current]):
        if rand < key:
            return choice
        choice = space[key]
    return None

这个函数对我来说太复杂了,而且很丑。我希望这里的每个人都能提供一些改进的建议或其他方法。对我来说,效率没有代码的整洁和可读性重要。


当前回答

在Udacity免费课程AI for Robotics中,Sebastien Thurn对此进行了演讲。基本上,他用mod运算符%做了一个权重索引的圆形数组,将变量beta设为0,随机选择一个索引, for循环遍历N,其中N是指标的数量,在for循环中,首先按公式增加beta:

Beta = Beta +来自{0…2 * Weight_max}

然后在for循环中嵌套一个while循环per:

while w[index] < beta:
    beta = beta - w[index]
    index = index + 1

select p[index]

然后到下一个索引,根据概率(或课程中介绍的情况下的归一化概率)重新采样。

在Udacity上找到第8课,机器人人工智能的第21期视频,他正在讲粒子滤波器。

其他回答

步骤1:生成您感兴趣的CDF F

步骤2:生成u.r.v. u

步骤3:求z=F^{-1}(u)

这种建模在概率论或随机过程课程中有描述。这是适用的,因为您有简单的CDF。

一种方法是随机化所有权重的总和,然后使用这些值作为每个变量的极限点。以下是作为生成器的粗略实现。

def rand_weighted(weights):
    """
    Generator which uses the weights to generate a
    weighted random values
    """
    sum_weights = sum(weights.values())
    cum_weights = {}
    current_weight = 0
    for key, value in sorted(weights.iteritems()):
        current_weight += value
        cum_weights[key] = current_weight
    while True:
        sel = int(random.uniform(0, 1) * sum_weights)
        for key, value in sorted(cum_weights.iteritems()):
            if sel < value:
                break
        yield key

这取决于你想对分布进行多少次抽样。

假设要对分布进行K次抽样。当n是分布中的项数时,每次使用np.random.choice()的时间复杂度为O(K(n + log(n)))。

在我的例子中,我需要对相同的分布进行多次采样,阶数为10^3其中n阶数为10^6。我使用了下面的代码,它预先计算了累积分布,并在O(log(n))中对其进行采样。总体时间复杂度为O(n+K*log(n))。

import numpy as np

n,k = 10**6,10**3

# Create dummy distribution
a = np.array([i+1 for i in range(n)])
p = np.array([1.0/n]*n)

cfd = p.cumsum()
for _ in range(k):
    x = np.random.uniform()
    idx = cfd.searchsorted(x, side='right')
    sampled_element = a[idx]
import numpy as np
w=np.array([ 0.4,  0.8,  1.6,  0.8,  0.4])
np.random.choice(w, p=w/sum(w))

下面是使用numpy的另一个版本的weighted_choice。传入weights向量,它将返回一个由0组成的数组,其中包含一个1,表示所选择的bin。该代码默认只进行一次绘制,但您可以传入绘制的数量,并且将返回每个绘制的bin的计数。

如果权重向量的和不等于1,它将被规范化,使之等于1。

import numpy as np

def weighted_choice(weights, n=1):
    if np.sum(weights)!=1:
        weights = weights/np.sum(weights)

    draws = np.random.random_sample(size=n)

    weights = np.cumsum(weights)
    weights = np.insert(weights,0,0.0)

    counts = np.histogram(draws, bins=weights)
    return(counts[0])