我需要写一个加权版的random。选择(列表中的每个元素有不同的被选择的概率)。这是我想到的:
def weightedChoice(choices):
"""Like random.choice, but each element can have a different chance of
being selected.
choices can be any iterable containing iterables with two items each.
Technically, they can have more than two items, the rest will just be
ignored. The first item is the thing being chosen, the second item is
its weight. The weights can be any numeric values, what matters is the
relative differences between them.
"""
space = {}
current = 0
for choice, weight in choices:
if weight > 0:
space[current] = choice
current += weight
rand = random.uniform(0, current)
for key in sorted(space.keys() + [current]):
if rand < key:
return choice
choice = space[key]
return None
这个函数对我来说太复杂了,而且很丑。我希望这里的每个人都能提供一些改进的建议或其他方法。对我来说,效率没有代码的整洁和可读性重要。
下面是Python 3.6标准库中包含的版本:
import itertools as _itertools
import bisect as _bisect
class Random36(random.Random):
"Show the code included in the Python 3.6 version of the Random class"
def choices(self, population, weights=None, *, cum_weights=None, k=1):
"""Return a k sized list of population elements chosen with replacement.
If the relative weights or cumulative weights are not specified,
the selections are made with equal probability.
"""
random = self.random
if cum_weights is None:
if weights is None:
_int = int
total = len(population)
return [population[_int(random() * total)] for i in range(k)]
cum_weights = list(_itertools.accumulate(weights))
elif weights is not None:
raise TypeError('Cannot specify both weights and cumulative weights')
if len(cum_weights) != len(population):
raise ValueError('The number of weights does not match the population')
bisect = _bisect.bisect
total = cum_weights[-1]
return [population[bisect(cum_weights, random() * total)] for i in range(k)]
来源:https://hg.python.org/cpython/file/tip/Lib/random.py l340
假设你有
items = [11, 23, 43, 91]
probability = [0.2, 0.3, 0.4, 0.1]
你有一个函数,它生成一个介于[0,1)之间的随机数(我们可以在这里使用random.random())。
现在求概率的前缀和
prefix_probability=[0.2,0.5,0.9,1]
现在,我们只需取一个0-1之间的随机数,然后使用二分搜索来查找该数字在prefix_probability中的位置。这个索引就是你的答案
代码是这样的
return items[bisect.bisect(prefix_probability,random.random())]
为random.choice()提供一个预先加权的列表:
解决方案和测试:
import random
options = ['a', 'b', 'c', 'd']
weights = [1, 2, 5, 2]
weighted_options = [[opt]*wgt for opt, wgt in zip(options, weights)]
weighted_options = [opt for sublist in weighted_options for opt in sublist]
print(weighted_options)
# test
counts = {c: 0 for c in options}
for x in range(10000):
counts[random.choice(weighted_options)] += 1
for opt, wgt in zip(options, weights):
wgt_r = counts[opt] / 10000 * sum(weights)
print(opt, counts[opt], wgt, wgt_r)
输出:
['a', 'b', 'b', 'c', 'c', 'c', 'c', 'c', 'd', 'd']
a 1025 1 1.025
b 1948 2 1.948
c 5019 5 5.019
d 2008 2 2.008