我需要写一个加权版的random。选择(列表中的每个元素有不同的被选择的概率)。这是我想到的:
def weightedChoice(choices):
"""Like random.choice, but each element can have a different chance of
being selected.
choices can be any iterable containing iterables with two items each.
Technically, they can have more than two items, the rest will just be
ignored. The first item is the thing being chosen, the second item is
its weight. The weights can be any numeric values, what matters is the
relative differences between them.
"""
space = {}
current = 0
for choice, weight in choices:
if weight > 0:
space[current] = choice
current += weight
rand = random.uniform(0, current)
for key in sorted(space.keys() + [current]):
if rand < key:
return choice
choice = space[key]
return None
这个函数对我来说太复杂了,而且很丑。我希望这里的每个人都能提供一些改进的建议或其他方法。对我来说,效率没有代码的整洁和可读性重要。
我不喜欢它们的语法。我只想具体说明这些项目是什么以及每项的权重是多少。我意识到我可以用随机。选项,但我很快就写了下面的类。
import random, string
from numpy import cumsum
class randomChoiceWithProportions:
'''
Accepts a dictionary of choices as keys and weights as values. Example if you want a unfair dice:
choiceWeightDic = {"1":0.16666666666666666, "2": 0.16666666666666666, "3": 0.16666666666666666
, "4": 0.16666666666666666, "5": .06666666666666666, "6": 0.26666666666666666}
dice = randomChoiceWithProportions(choiceWeightDic)
samples = []
for i in range(100000):
samples.append(dice.sample())
# Should be close to .26666
samples.count("6")/len(samples)
# Should be close to .16666
samples.count("1")/len(samples)
'''
def __init__(self, choiceWeightDic):
self.choiceWeightDic = choiceWeightDic
weightSum = sum(self.choiceWeightDic.values())
assert weightSum == 1, 'Weights sum to ' + str(weightSum) + ', not 1.'
self.valWeightDict = self._compute_valWeights()
def _compute_valWeights(self):
valWeights = list(cumsum(list(self.choiceWeightDic.values())))
valWeightDict = dict(zip(list(self.choiceWeightDic.keys()), valWeights))
return valWeightDict
def sample(self):
num = random.uniform(0,1)
for key, val in self.valWeightDict.items():
if val >= num:
return key
我看了指向的其他线程,并在我的编码风格中提出了这种变化,这返回了用于计数的索引,但返回字符串很简单(注释返回替代):
import random
import bisect
try:
range = xrange
except:
pass
def weighted_choice(choices):
total, cumulative = 0, []
for c,w in choices:
total += w
cumulative.append((total, c))
r = random.uniform(0, total)
# return index
return bisect.bisect(cumulative, (r,))
# return item string
#return choices[bisect.bisect(cumulative, (r,))][0]
# define choices and relative weights
choices = [("WHITE",90), ("RED",8), ("GREEN",2)]
tally = [0 for item in choices]
n = 100000
# tally up n weighted choices
for i in range(n):
tally[weighted_choice(choices)] += 1
print([t/sum(tally)*100 for t in tally])
这取决于你想对分布进行多少次抽样。
假设要对分布进行K次抽样。当n是分布中的项数时,每次使用np.random.choice()的时间复杂度为O(K(n + log(n)))。
在我的例子中,我需要对相同的分布进行多次采样,阶数为10^3其中n阶数为10^6。我使用了下面的代码,它预先计算了累积分布,并在O(log(n))中对其进行采样。总体时间复杂度为O(n+K*log(n))。
import numpy as np
n,k = 10**6,10**3
# Create dummy distribution
a = np.array([i+1 for i in range(n)])
p = np.array([1.0/n]*n)
cfd = p.cumsum()
for _ in range(k):
x = np.random.uniform()
idx = cfd.searchsorted(x, side='right')
sampled_element = a[idx]
如果不介意使用numpy,可以使用numpy.random.choice。
例如:
import numpy
items = [["item1", 0.2], ["item2", 0.3], ["item3", 0.45], ["item4", 0.05]
elems = [i[0] for i in items]
probs = [i[1] for i in items]
trials = 1000
results = [0] * len(items)
for i in range(trials):
res = numpy.random.choice(items, p=probs) #This is where the item is selected!
results[items.index(res)] += 1
results = [r / float(trials) for r in results]
print "item\texpected\tactual"
for i in range(len(probs)):
print "%s\t%0.4f\t%0.4f" % (items[i], probs[i], results[i])
如果你知道你需要提前做多少选择,你可以不像这样循环:
numpy.random.choice(items, trials, p=probs)