我需要写一个加权版的random。选择(列表中的每个元素有不同的被选择的概率)。这是我想到的:

def weightedChoice(choices):
    """Like random.choice, but each element can have a different chance of
    being selected.

    choices can be any iterable containing iterables with two items each.
    Technically, they can have more than two items, the rest will just be
    ignored.  The first item is the thing being chosen, the second item is
    its weight.  The weights can be any numeric values, what matters is the
    relative differences between them.
    """
    space = {}
    current = 0
    for choice, weight in choices:
        if weight > 0:
            space[current] = choice
            current += weight
    rand = random.uniform(0, current)
    for key in sorted(space.keys() + [current]):
        if rand < key:
            return choice
        choice = space[key]
    return None

这个函数对我来说太复杂了,而且很丑。我希望这里的每个人都能提供一些改进的建议或其他方法。对我来说,效率没有代码的整洁和可读性重要。


当前回答

加权选择的一个非常基本和简单的方法如下:

np.random.choice(['A', 'B', 'C'], p=[0.3, 0.4, 0.3])

其他回答

下面是Python 3.6标准库中包含的版本:

import itertools as _itertools
import bisect as _bisect

class Random36(random.Random):
    "Show the code included in the Python 3.6 version of the Random class"

    def choices(self, population, weights=None, *, cum_weights=None, k=1):
        """Return a k sized list of population elements chosen with replacement.

        If the relative weights or cumulative weights are not specified,
        the selections are made with equal probability.

        """
        random = self.random
        if cum_weights is None:
            if weights is None:
                _int = int
                total = len(population)
                return [population[_int(random() * total)] for i in range(k)]
            cum_weights = list(_itertools.accumulate(weights))
        elif weights is not None:
            raise TypeError('Cannot specify both weights and cumulative weights')
        if len(cum_weights) != len(population):
            raise ValueError('The number of weights does not match the population')
        bisect = _bisect.bisect
        total = cum_weights[-1]
        return [population[bisect(cum_weights, random() * total)] for i in range(k)]

来源:https://hg.python.org/cpython/file/tip/Lib/random.py l340

步骤1:生成您感兴趣的CDF F

步骤2:生成u.r.v. u

步骤3:求z=F^{-1}(u)

这种建模在概率论或随机过程课程中有描述。这是适用的,因为您有简单的CDF。

假设你有

items = [11, 23, 43, 91] 
probability = [0.2, 0.3, 0.4, 0.1]

你有一个函数,它生成一个介于[0,1)之间的随机数(我们可以在这里使用random.random())。 现在求概率的前缀和

prefix_probability=[0.2,0.5,0.9,1]

现在,我们只需取一个0-1之间的随机数,然后使用二分搜索来查找该数字在prefix_probability中的位置。这个索引就是你的答案

代码是这样的

return items[bisect.bisect(prefix_probability,random.random())]

为random.choice()提供一个预先加权的列表:

解决方案和测试:

import random

options = ['a', 'b', 'c', 'd']
weights = [1, 2, 5, 2]

weighted_options = [[opt]*wgt for opt, wgt in zip(options, weights)]
weighted_options = [opt for sublist in weighted_options for opt in sublist]
print(weighted_options)

# test

counts = {c: 0 for c in options}
for x in range(10000):
    counts[random.choice(weighted_options)] += 1

for opt, wgt in zip(options, weights):
    wgt_r = counts[opt] / 10000 * sum(weights)
    print(opt, counts[opt], wgt, wgt_r)

输出:

['a', 'b', 'b', 'c', 'c', 'c', 'c', 'c', 'd', 'd']
a 1025 1 1.025
b 1948 2 1.948
c 5019 5 5.019
d 2008 2 2.008
import numpy as np
w=np.array([ 0.4,  0.8,  1.6,  0.8,  0.4])
np.random.choice(w, p=w/sum(w))