我需要写一个加权版的random。选择(列表中的每个元素有不同的被选择的概率)。这是我想到的:

def weightedChoice(choices):
    """Like random.choice, but each element can have a different chance of
    being selected.

    choices can be any iterable containing iterables with two items each.
    Technically, they can have more than two items, the rest will just be
    ignored.  The first item is the thing being chosen, the second item is
    its weight.  The weights can be any numeric values, what matters is the
    relative differences between them.
    """
    space = {}
    current = 0
    for choice, weight in choices:
        if weight > 0:
            space[current] = choice
            current += weight
    rand = random.uniform(0, current)
    for key in sorted(space.keys() + [current]):
        if rand < key:
            return choice
        choice = space[key]
    return None

这个函数对我来说太复杂了,而且很丑。我希望这里的每个人都能提供一些改进的建议或其他方法。对我来说,效率没有代码的整洁和可读性重要。


当前回答

从版本1.7.0开始,NumPy有一个支持概率分布的选择函数。

from numpy.random import choice
draw = choice(list_of_candidates, number_of_items_to_pick,
              p=probability_distribution)

注意,probability_distribution是一个与list_of_candidate顺序相同的序列。您还可以使用关键字replace=False来更改行为,这样绘制的项就不会被替换。

其他回答

如果你碰巧有Python 3,并且害怕安装numpy或编写自己的循环,你可以这样做:

import itertools, bisect, random

def weighted_choice(choices):
   weights = list(zip(*choices))[1]
   return choices[bisect.bisect(list(itertools.accumulate(weights)),
                                random.uniform(0, sum(weights)))][0]

因为你可以用一袋管道适配器做任何东西!尽管……我必须承认,尼德的回答虽然稍长一些,但比较容易理解。

加权选择的一个非常基本和简单的方法如下:

np.random.choice(['A', 'B', 'C'], p=[0.3, 0.4, 0.3])

下面是Python 3.6标准库中包含的版本:

import itertools as _itertools
import bisect as _bisect

class Random36(random.Random):
    "Show the code included in the Python 3.6 version of the Random class"

    def choices(self, population, weights=None, *, cum_weights=None, k=1):
        """Return a k sized list of population elements chosen with replacement.

        If the relative weights or cumulative weights are not specified,
        the selections are made with equal probability.

        """
        random = self.random
        if cum_weights is None:
            if weights is None:
                _int = int
                total = len(population)
                return [population[_int(random() * total)] for i in range(k)]
            cum_weights = list(_itertools.accumulate(weights))
        elif weights is not None:
            raise TypeError('Cannot specify both weights and cumulative weights')
        if len(cum_weights) != len(population):
            raise ValueError('The number of weights does not match the population')
        bisect = _bisect.bisect
        total = cum_weights[-1]
        return [population[bisect(cum_weights, random() * total)] for i in range(k)]

来源:https://hg.python.org/cpython/file/tip/Lib/random.py l340

一种方法是随机化所有权重的总和,然后使用这些值作为每个变量的极限点。以下是作为生成器的粗略实现。

def rand_weighted(weights):
    """
    Generator which uses the weights to generate a
    weighted random values
    """
    sum_weights = sum(weights.values())
    cum_weights = {}
    current_weight = 0
    for key, value in sorted(weights.iteritems()):
        current_weight += value
        cum_weights[key] = current_weight
    while True:
        sel = int(random.uniform(0, 1) * sum_weights)
        for key, value in sorted(cum_weights.iteritems()):
            if sel < value:
                break
        yield key

下面是使用numpy的另一个版本的weighted_choice。传入weights向量,它将返回一个由0组成的数组,其中包含一个1,表示所选择的bin。该代码默认只进行一次绘制,但您可以传入绘制的数量,并且将返回每个绘制的bin的计数。

如果权重向量的和不等于1,它将被规范化,使之等于1。

import numpy as np

def weighted_choice(weights, n=1):
    if np.sum(weights)!=1:
        weights = weights/np.sum(weights)

    draws = np.random.random_sample(size=n)

    weights = np.cumsum(weights)
    weights = np.insert(weights,0,0.0)

    counts = np.histogram(draws, bins=weights)
    return(counts[0])