我需要写一个加权版的random。选择(列表中的每个元素有不同的被选择的概率)。这是我想到的:

def weightedChoice(choices):
    """Like random.choice, but each element can have a different chance of
    being selected.

    choices can be any iterable containing iterables with two items each.
    Technically, they can have more than two items, the rest will just be
    ignored.  The first item is the thing being chosen, the second item is
    its weight.  The weights can be any numeric values, what matters is the
    relative differences between them.
    """
    space = {}
    current = 0
    for choice, weight in choices:
        if weight > 0:
            space[current] = choice
            current += weight
    rand = random.uniform(0, current)
    for key in sorted(space.keys() + [current]):
        if rand < key:
            return choice
        choice = space[key]
    return None

这个函数对我来说太复杂了,而且很丑。我希望这里的每个人都能提供一些改进的建议或其他方法。对我来说,效率没有代码的整洁和可读性重要。


当前回答

从版本1.7.0开始,NumPy有一个支持概率分布的选择函数。

from numpy.random import choice
draw = choice(list_of_candidates, number_of_items_to_pick,
              p=probability_distribution)

注意,probability_distribution是一个与list_of_candidate顺序相同的序列。您还可以使用关键字replace=False来更改行为,这样绘制的项就不会被替换。

其他回答

下面是Python 3.6标准库中包含的版本:

import itertools as _itertools
import bisect as _bisect

class Random36(random.Random):
    "Show the code included in the Python 3.6 version of the Random class"

    def choices(self, population, weights=None, *, cum_weights=None, k=1):
        """Return a k sized list of population elements chosen with replacement.

        If the relative weights or cumulative weights are not specified,
        the selections are made with equal probability.

        """
        random = self.random
        if cum_weights is None:
            if weights is None:
                _int = int
                total = len(population)
                return [population[_int(random() * total)] for i in range(k)]
            cum_weights = list(_itertools.accumulate(weights))
        elif weights is not None:
            raise TypeError('Cannot specify both weights and cumulative weights')
        if len(cum_weights) != len(population):
            raise ValueError('The number of weights does not match the population')
        bisect = _bisect.bisect
        total = cum_weights[-1]
        return [population[bisect(cum_weights, random() * total)] for i in range(k)]

来源:https://hg.python.org/cpython/file/tip/Lib/random.py l340

def weighted_choice(choices):
   total = sum(w for c, w in choices)
   r = random.uniform(0, total)
   upto = 0
   for c, w in choices:
      if upto + w >= r:
         return c
      upto += w
   assert False, "Shouldn't get here"

步骤1:生成您感兴趣的CDF F

步骤2:生成u.r.v. u

步骤3:求z=F^{-1}(u)

这种建模在概率论或随机过程课程中有描述。这是适用的,因为您有简单的CDF。

从Python 3.6开始,随机模块中有一个方法选择。

In [1]: import random

In [2]: random.choices(
...:     population=[['a','b'], ['b','a'], ['c','b']],
...:     weights=[0.2, 0.2, 0.6],
...:     k=10
...: )

Out[2]:
[['c', 'b'],
 ['c', 'b'],
 ['b', 'a'],
 ['c', 'b'],
 ['c', 'b'],
 ['b', 'a'],
 ['c', 'b'],
 ['b', 'a'],
 ['c', 'b'],
 ['c', 'b']]

注意随机。选择将与替换样本,每个文档:

返回一个k大小的元素列表,这些元素是从替换的填充中选择的。

为确保回答的完整性,请注意:

当从一个有限的总体中抽取一个抽样单位并返回时 对于该种群,在其特征被记录下来之后, 在绘制下一个单元之前,采样被称为“与” 更换”。它基本上意味着每个元素可以被选择多于 一次。

如果您需要在不替换的情况下进行采样,那么就像@ronan-paixão的精彩回答所说的那样,您可以使用numpy。Choice,其replace参数控制这种行为。

如果你碰巧有Python 3,并且害怕安装numpy或编写自己的循环,你可以这样做:

import itertools, bisect, random

def weighted_choice(choices):
   weights = list(zip(*choices))[1]
   return choices[bisect.bisect(list(itertools.accumulate(weights)),
                                random.uniform(0, sum(weights)))][0]

因为你可以用一袋管道适配器做任何东西!尽管……我必须承认,尼德的回答虽然稍长一些,但比较容易理解。