我需要写一个加权版的random。选择(列表中的每个元素有不同的被选择的概率)。这是我想到的:

def weightedChoice(choices):
    """Like random.choice, but each element can have a different chance of
    being selected.

    choices can be any iterable containing iterables with two items each.
    Technically, they can have more than two items, the rest will just be
    ignored.  The first item is the thing being chosen, the second item is
    its weight.  The weights can be any numeric values, what matters is the
    relative differences between them.
    """
    space = {}
    current = 0
    for choice, weight in choices:
        if weight > 0:
            space[current] = choice
            current += weight
    rand = random.uniform(0, current)
    for key in sorted(space.keys() + [current]):
        if rand < key:
            return choice
        choice = space[key]
    return None

这个函数对我来说太复杂了,而且很丑。我希望这里的每个人都能提供一些改进的建议或其他方法。对我来说,效率没有代码的整洁和可读性重要。


当前回答

这取决于你想对分布进行多少次抽样。

假设要对分布进行K次抽样。当n是分布中的项数时,每次使用np.random.choice()的时间复杂度为O(K(n + log(n)))。

在我的例子中,我需要对相同的分布进行多次采样,阶数为10^3其中n阶数为10^6。我使用了下面的代码,它预先计算了累积分布,并在O(log(n))中对其进行采样。总体时间复杂度为O(n+K*log(n))。

import numpy as np

n,k = 10**6,10**3

# Create dummy distribution
a = np.array([i+1 for i in range(n)])
p = np.array([1.0/n]*n)

cfd = p.cumsum()
for _ in range(k):
    x = np.random.uniform()
    idx = cfd.searchsorted(x, side='right')
    sampled_element = a[idx]

其他回答

粗糙的,但可能足够:

import random
weighted_choice = lambda s : random.choice(sum(([v]*wt for v,wt in s),[]))

这有用吗?

# define choices and relative weights
choices = [("WHITE",90), ("RED",8), ("GREEN",2)]

# initialize tally dict
tally = dict.fromkeys(choices, 0)

# tally up 1000 weighted choices
for i in xrange(1000):
    tally[weighted_choice(choices)] += 1

print tally.items()

打印:

[('WHITE', 904), ('GREEN', 22), ('RED', 74)]

假设所有权重都是整数。它们的和不一定是100,我这么做只是为了让测试结果更容易理解。(如果权重是浮点数,则将它们都乘以10,直到所有权重>= 1。)

weights = [.6, .2, .001, .199]
while any(w < 1.0 for w in weights):
    weights = [w*10 for w in weights]
weights = map(int, weights)

将权重排列成a 累积分布。 使用random.random()来选择一个随机的 浮点0.0 <= x < total。 搜索 用等分法进行分布。二等分的 如http://docs.python.org/dev/library/bisect.html#other-examples中的示例所示。

from random import random
from bisect import bisect

def weighted_choice(choices):
    values, weights = zip(*choices)
    total = 0
    cum_weights = []
    for w in weights:
        total += w
        cum_weights.append(total)
    x = random() * total
    i = bisect(cum_weights, x)
    return values[i]

>>> weighted_choice([("WHITE",90), ("RED",8), ("GREEN",2)])
'WHITE'

如果需要做出多个选择,可以将其分成两个函数,一个用于构建累积权重,另一个用于对随机点进行等分。

通解:

import random
def weighted_choice(choices, weights):
    total = sum(weights)
    treshold = random.uniform(0, total)
    for k, weight in enumerate(weights):
        total -= weight
        if total < treshold:
            return choices[k]

我不喜欢它们的语法。我只想具体说明这些项目是什么以及每项的权重是多少。我意识到我可以用随机。选项,但我很快就写了下面的类。

import random, string
from numpy import cumsum

class randomChoiceWithProportions:
    '''
    Accepts a dictionary of choices as keys and weights as values. Example if you want a unfair dice:


    choiceWeightDic = {"1":0.16666666666666666, "2": 0.16666666666666666, "3": 0.16666666666666666
    , "4": 0.16666666666666666, "5": .06666666666666666, "6": 0.26666666666666666}
    dice = randomChoiceWithProportions(choiceWeightDic)

    samples = []
    for i in range(100000):
        samples.append(dice.sample())

    # Should be close to .26666
    samples.count("6")/len(samples)

    # Should be close to .16666
    samples.count("1")/len(samples)
    '''
    def __init__(self, choiceWeightDic):
        self.choiceWeightDic = choiceWeightDic
        weightSum = sum(self.choiceWeightDic.values())
        assert weightSum == 1, 'Weights sum to ' + str(weightSum) + ', not 1.'
        self.valWeightDict = self._compute_valWeights()

    def _compute_valWeights(self):
        valWeights = list(cumsum(list(self.choiceWeightDic.values())))
        valWeightDict = dict(zip(list(self.choiceWeightDic.keys()), valWeights))
        return valWeightDict

    def sample(self):
        num = random.uniform(0,1)
        for key, val in self.valWeightDict.items():
            if val >= num:
                return key

从版本1.7.0开始,NumPy有一个支持概率分布的选择函数。

from numpy.random import choice
draw = choice(list_of_candidates, number_of_items_to_pick,
              p=probability_distribution)

注意,probability_distribution是一个与list_of_candidate顺序相同的序列。您还可以使用关键字replace=False来更改行为,这样绘制的项就不会被替换。