假设我们有一个包含多个data.csv文件的文件夹,每个文件包含相同数量的变量,但每个变量来自不同的时间。 在R中是否有一种方法可以同时导入它们而不是逐个导入?

我的问题是我有大约2000个数据文件要导入,并且只能通过使用代码单独导入它们:

read.delim(file="filename", header=TRUE, sep="\t")

效率不高。


当前回答

除了使用lapply或R中的其他循环构造,您还可以将CSV文件合并到一个文件中。

在Unix中,如果文件没有头文件,那么很简单:

cat *.csv > all.csv

或者如果有标题,你可以找到一个字符串匹配标题,只有标题(即假设标题行都以“年龄”开头),你会这样做:

cat *.csv | grep -v ^Age > all.csv

我认为在Windows中,你可以通过DOS命令框中的COPY和SEARCH(或FIND或其他什么)来做到这一点,但为什么不安装cygwin并获得Unix命令shell的强大功能呢?

其他回答

如下所示,每个数据帧都应该作为单个列表中的单独元素:

temp = list.files(pattern="*.csv")
myfiles = lapply(temp, read.delim)

这里假设您将这些csv文件放在一个目录(您当前的工作目录)中,并且它们都具有小写扩展名.csv。

如果你想把这些数据帧组合成一个单一的数据帧,请参考其他答案中的解决方案,如do.call(rbind,…),dplyr::bind_rows()或data.table::rbindlist()。

如果你真的想要每个数据帧在一个单独的对象中,即使这通常是不可取的,你可以使用assign执行以下操作:

temp = list.files(pattern="*.csv")
for (i in 1:length(temp)) assign(temp[i], read.csv(temp[i]))

或者,不带赋值,并演示(1)如何清理文件名以及(2)如何使用list2env,您可以尝试以下方法:

temp = list.files(pattern="*.csv")
list2env(
  lapply(setNames(temp, make.names(gsub("*.csv$", "", temp))), 
         read.csv), envir = .GlobalEnv)

但是,最好还是把它们放在一个列表中。

除了使用lapply或R中的其他循环构造,您还可以将CSV文件合并到一个文件中。

在Unix中,如果文件没有头文件,那么很简单:

cat *.csv > all.csv

或者如果有标题,你可以找到一个字符串匹配标题,只有标题(即假设标题行都以“年龄”开头),你会这样做:

cat *.csv | grep -v ^Age > all.csv

我认为在Windows中,你可以通过DOS命令框中的COPY和SEARCH(或FIND或其他什么)来做到这一点,但为什么不安装cygwin并获得Unix命令shell的强大功能呢?

基于dnlbrk的注释,对于大文件,assign可以比list2env快得多。

library(readr)
library(stringr)

List_of_file_paths <- list.files(path ="C:/Users/Anon/Documents/Folder_with_csv_files/", pattern = ".csv", all.files = TRUE, full.names = TRUE)

通过将full.names参数设置为true,您将在文件列表中获得每个文件的完整路径作为单独的字符串,例如,List_of_file_paths[1]将类似于"C:/Users/Anon/Documents/Folder_with_csv_files/ fil1 .csv"

for(f in 1:length(List_of_filepaths)) {
  file_name <- str_sub(string = List_of_filepaths[f], start = 46, end = -5)
  file_df <- read_csv(List_of_filepaths[f])  
  assign( x = file_name, value = file_df, envir = .GlobalEnv)
}

你可以利用这些数据。table package的fread或base R read.csv而不是read_csv。file_name步骤允许您整理名称,以便每个数据帧不保留文件的完整路径作为其名称。 在将数据表传输到全局环境之前,您可以扩展循环对数据表做进一步的处理,例如:

for(f in 1:length(List_of_filepaths)) {
  file_name <- str_sub(string = List_of_filepaths[f], start = 46, end = -5)
  file_df <- read_csv(List_of_filepaths[f])  
  file_df <- file_df[,1:3] #if you only need the first three columns
  assign( x = file_name, value = file_df, envir = .GlobalEnv)
}

使用readr 2.0.0以后,您可以一次读取多个文件,只需提供文件参数的路径列表。下面是一个使用readr::read_csv()的示例。

packageVersion("readr")
#> [1] '2.0.1'
library(readr)
library(fs)

# create files to read in
write_csv(read_csv("1, 2 \n 3, 4", col_names = c("x", "y")), file = "file1.csv")
write_csv(read_csv("5, 6 \n 7, 8", col_names = c("x", "y")), file = "file2.csv")

# get a list of files
files <- dir_ls(".", glob = "file*csv")
files
#> file1.csv file2.csv

# read them in at once
# record paths in a column called filename
read_csv(files, id = "filename")
#> # A tibble: 4 × 3
#>   filename      x     y
#>   <chr>     <dbl> <dbl>
#> 1 file1.csv     1     2
#> 2 file1.csv     3     4
#> 3 file2.csv     5     6
#> 4 file2.csv     7     8

由reprex包于2021-09-16创建(v2.0.1)

在我看来,大多数其他答案都被里约热内卢::import_list淘汰了,这是一个简洁的一行程序:

library(rio)
my_data <- import_list(dir("path_to_directory", pattern = ".csv"), rbind = TRUE)

任何额外的参数都传递给里约热内卢::import。里约热内卢几乎可以处理R可以读取的任何文件格式,而且它使用数据。桌子的fread在可能的地方,所以它也应该快。