假设我们有一个包含多个data.csv文件的文件夹,每个文件包含相同数量的变量,但每个变量来自不同的时间。 在R中是否有一种方法可以同时导入它们而不是逐个导入?
我的问题是我有大约2000个数据文件要导入,并且只能通过使用代码单独导入它们:
read.delim(file="filename", header=TRUE, sep="\t")
效率不高。
假设我们有一个包含多个data.csv文件的文件夹,每个文件包含相同数量的变量,但每个变量来自不同的时间。 在R中是否有一种方法可以同时导入它们而不是逐个导入?
我的问题是我有大约2000个数据文件要导入,并且只能通过使用代码单独导入它们:
read.delim(file="filename", header=TRUE, sep="\t")
效率不高。
当前回答
使用许多文件和许多核心,fread xargs cat(如下所述)比前3个答案中最快的解决方案快大约50倍。
rbindlist lapply read.delim 500s <- 1st place & accepted answer
rbindlist lapply fread 250s <- 2nd & 3rd place answers
rbindlist mclapply fread 10s
fread xargs cat 5s
是时候把121401个csv读入一个data.table了。每次平均跑三次,然后四舍五入。每个csv有3列,一个标题行,平均有4.510行。Machine是一个96核的GCP VM。
@A5C1D2H2I1M1N2O1R2T1、@ leersej和@marbel给出的前三个答案本质上都是相同的:对每个文件应用fread(或read.delim),然后rbind/rbindlist结果data.tables。对于小型数据集,我通常使用rbindlist(lapply(list.files("*.csv"),fread))表单。对于中等规模的数据集,我使用并行的mclapply而不是lapply,如果有多个核心,那么lapply速度要快得多。
这比其他r内部的替代方案更好,但对于大量的小型csv来说,在速度问题上不是最好的。在这种情况下,首先使用cat将所有csv连接到一个csv中会更快,就像@Spacedman的答案一样。我将在R中添加一些关于如何做到这一点的细节:
x = fread(cmd='cat *.csv', header=F)
但是,如果每个csv都有一个头呢?
x = fread(cmd="awk 'NR==1||FNR!=1' *.csv", header=T)
如果您有太多文件,以至于*.csv shell glob失败了怎么办?
x = fread(cmd='find . -name "*.csv" | xargs cat', header=F)
如果所有文件都有头文件,而且文件太多怎么办?
header = fread(cmd='find . -name "*.csv" | head -n1 | xargs head -n1', header=T)
x = fread(cmd='find . -name "*.csv" | xargs tail -q -n+2', header=F)
setnames(x,header)
如果结果连接的csv对于系统内存来说太大怎么办?(例如,/dev/shm out of space错误)
system('find . -name "*.csv" | xargs cat > combined.csv')
x = fread('combined.csv', header=F)
头吗?
system('find . -name "*.csv" | head -n1 | xargs head -n1 > combined.csv')
system('find . -name "*.csv" | xargs tail -q -n+2 >> combined.csv')
x = fread('combined.csv', header=T)
最后,如果您不希望将所有.csv文件放在一个目录中,而希望将其放在一组特定的文件中,该怎么办?(而且,它们都有头文件。)(这是我的用例。)
fread(text=paste0(system("xargs cat|awk 'NR==1||$1!=\"<column one name>\"'",input=paths,intern=T),collapse="\n"),header=T,sep="\t")
这和普通的fread xargs cat的速度差不多:)
注:用于数据。表pre-v1.11.6(2018年9月19日),从fread中省略cmd= (cmd=。
总之,如果您对速度感兴趣,并且有很多文件和内核,那么fread xargs cat比前3个答案中最快的解决方案快大约50倍。
更新:这里是我写的一个函数,可以轻松地应用最快的解决方案。我在生产环境中使用了它,但是在信任它之前,您应该用自己的数据彻底测试它。
fread_many = function(files,header=T,...){
if(length(files)==0) return()
if(typeof(files)!='character') return()
files = files[file.exists(files)]
if(length(files)==0) return()
tmp = tempfile(fileext = ".csv")
# note 1: requires awk, not cat or tail because some files have no final newline
# note 2: parallel --xargs is 40% slower
# note 3: reading to var is 15% slower and crashes R if the string is too long
# note 4: shorter paths -> more paths per awk -> fewer awks -> measurably faster
# so best cd to the csv dir and use relative paths
if(header==T){
system(paste0('head -n1 ',files[1],' > ',tmp))
system(paste0("xargs awk 'FNR>1' >> ",tmp),input=files)
} else {
system(paste0("xargs awk '1' > ",tmp),input=files)
}
DT = fread(file=tmp,header=header,...)
file.remove(tmp)
DT
}
更新2:这里是fread_many函数的一个更复杂的版本,用于需要结果数据的情况。表中包含每个csv的inpath的列。在这种情况下,还必须使用sep参数显式地指定csv分隔符。
fread_many = function(files,header=T,keep_inpath=F,sep="auto",...){
if(length(files)==0) return()
if(typeof(files)!='character') return()
files = files[file.exists(files)]
if(length(files)==0) return()
tmp = tempfile(fileext = ".csv")
if(keep_inpath==T){
stopifnot(sep!="auto")
if(header==T){
system(paste0('/usr/bin/echo -ne inpath"',sep,'" > ',tmp))
system(paste0('head -n1 ',files[1],' >> ',tmp))
system(paste0("xargs awk -vsep='",sep,"' 'BEGIN{OFS=sep}{if(FNR>1)print FILENAME,$0}' >> ",tmp),input=files)
} else {
system(paste0("xargs awk -vsep='",sep,"' 'BEGIN{OFS=sep}{print FILENAME,$0}' > ",tmp),input=files)
}
} else {
if(header==T){
system(paste0('head -n1 ',files[1],' > ',tmp))
system(paste0("xargs awk 'FNR>1' >> ",tmp),input=files)
} else {
system(paste0("xargs awk '1' > ",tmp),input=files)
}
}
DT = fread(file=tmp,header=header,sep=sep,...)
file.remove(tmp)
DT
}
注意:在读取csv之前,我的所有解决方案都假设它们都有相同的分隔符。如果不是所有的csv都使用相同的分隔符,可以分批使用rbindlist lapply fread、rbindlist mclapply fread或fread xargs cat,其中批处理中的所有csv都使用相同的分隔符。
其他回答
使用readr 2.0.0以后,您可以一次读取多个文件,只需提供文件参数的路径列表。下面是一个使用readr::read_csv()的示例。
packageVersion("readr")
#> [1] '2.0.1'
library(readr)
library(fs)
# create files to read in
write_csv(read_csv("1, 2 \n 3, 4", col_names = c("x", "y")), file = "file1.csv")
write_csv(read_csv("5, 6 \n 7, 8", col_names = c("x", "y")), file = "file2.csv")
# get a list of files
files <- dir_ls(".", glob = "file*csv")
files
#> file1.csv file2.csv
# read them in at once
# record paths in a column called filename
read_csv(files, id = "filename")
#> # A tibble: 4 × 3
#> filename x y
#> <chr> <dbl> <dbl>
#> 1 file1.csv 1 2
#> 2 file1.csv 3 4
#> 3 file2.csv 5 6
#> 4 file2.csv 7 8
由reprex包于2021-09-16创建(v2.0.1)
如下所示,每个数据帧都应该作为单个列表中的单独元素:
temp = list.files(pattern="*.csv")
myfiles = lapply(temp, read.delim)
这里假设您将这些csv文件放在一个目录(您当前的工作目录)中,并且它们都具有小写扩展名.csv。
如果你想把这些数据帧组合成一个单一的数据帧,请参考其他答案中的解决方案,如do.call(rbind,…),dplyr::bind_rows()或data.table::rbindlist()。
如果你真的想要每个数据帧在一个单独的对象中,即使这通常是不可取的,你可以使用assign执行以下操作:
temp = list.files(pattern="*.csv")
for (i in 1:length(temp)) assign(temp[i], read.csv(temp[i]))
或者,不带赋值,并演示(1)如何清理文件名以及(2)如何使用list2env,您可以尝试以下方法:
temp = list.files(pattern="*.csv")
list2env(
lapply(setNames(temp, make.names(gsub("*.csv$", "", temp))),
read.csv), envir = .GlobalEnv)
但是,最好还是把它们放在一个列表中。
在我看来,大多数其他答案都被里约热内卢::import_list淘汰了,这是一个简洁的一行程序:
library(rio)
my_data <- import_list(dir("path_to_directory", pattern = ".csv"), rbind = TRUE)
任何额外的参数都传递给里约热内卢::import。里约热内卢几乎可以处理R可以读取的任何文件格式,而且它使用数据。桌子的fread在可能的地方,所以它也应该快。
使用许多文件和许多核心,fread xargs cat(如下所述)比前3个答案中最快的解决方案快大约50倍。
rbindlist lapply read.delim 500s <- 1st place & accepted answer
rbindlist lapply fread 250s <- 2nd & 3rd place answers
rbindlist mclapply fread 10s
fread xargs cat 5s
是时候把121401个csv读入一个data.table了。每次平均跑三次,然后四舍五入。每个csv有3列,一个标题行,平均有4.510行。Machine是一个96核的GCP VM。
@A5C1D2H2I1M1N2O1R2T1、@ leersej和@marbel给出的前三个答案本质上都是相同的:对每个文件应用fread(或read.delim),然后rbind/rbindlist结果data.tables。对于小型数据集,我通常使用rbindlist(lapply(list.files("*.csv"),fread))表单。对于中等规模的数据集,我使用并行的mclapply而不是lapply,如果有多个核心,那么lapply速度要快得多。
这比其他r内部的替代方案更好,但对于大量的小型csv来说,在速度问题上不是最好的。在这种情况下,首先使用cat将所有csv连接到一个csv中会更快,就像@Spacedman的答案一样。我将在R中添加一些关于如何做到这一点的细节:
x = fread(cmd='cat *.csv', header=F)
但是,如果每个csv都有一个头呢?
x = fread(cmd="awk 'NR==1||FNR!=1' *.csv", header=T)
如果您有太多文件,以至于*.csv shell glob失败了怎么办?
x = fread(cmd='find . -name "*.csv" | xargs cat', header=F)
如果所有文件都有头文件,而且文件太多怎么办?
header = fread(cmd='find . -name "*.csv" | head -n1 | xargs head -n1', header=T)
x = fread(cmd='find . -name "*.csv" | xargs tail -q -n+2', header=F)
setnames(x,header)
如果结果连接的csv对于系统内存来说太大怎么办?(例如,/dev/shm out of space错误)
system('find . -name "*.csv" | xargs cat > combined.csv')
x = fread('combined.csv', header=F)
头吗?
system('find . -name "*.csv" | head -n1 | xargs head -n1 > combined.csv')
system('find . -name "*.csv" | xargs tail -q -n+2 >> combined.csv')
x = fread('combined.csv', header=T)
最后,如果您不希望将所有.csv文件放在一个目录中,而希望将其放在一组特定的文件中,该怎么办?(而且,它们都有头文件。)(这是我的用例。)
fread(text=paste0(system("xargs cat|awk 'NR==1||$1!=\"<column one name>\"'",input=paths,intern=T),collapse="\n"),header=T,sep="\t")
这和普通的fread xargs cat的速度差不多:)
注:用于数据。表pre-v1.11.6(2018年9月19日),从fread中省略cmd= (cmd=。
总之,如果您对速度感兴趣,并且有很多文件和内核,那么fread xargs cat比前3个答案中最快的解决方案快大约50倍。
更新:这里是我写的一个函数,可以轻松地应用最快的解决方案。我在生产环境中使用了它,但是在信任它之前,您应该用自己的数据彻底测试它。
fread_many = function(files,header=T,...){
if(length(files)==0) return()
if(typeof(files)!='character') return()
files = files[file.exists(files)]
if(length(files)==0) return()
tmp = tempfile(fileext = ".csv")
# note 1: requires awk, not cat or tail because some files have no final newline
# note 2: parallel --xargs is 40% slower
# note 3: reading to var is 15% slower and crashes R if the string is too long
# note 4: shorter paths -> more paths per awk -> fewer awks -> measurably faster
# so best cd to the csv dir and use relative paths
if(header==T){
system(paste0('head -n1 ',files[1],' > ',tmp))
system(paste0("xargs awk 'FNR>1' >> ",tmp),input=files)
} else {
system(paste0("xargs awk '1' > ",tmp),input=files)
}
DT = fread(file=tmp,header=header,...)
file.remove(tmp)
DT
}
更新2:这里是fread_many函数的一个更复杂的版本,用于需要结果数据的情况。表中包含每个csv的inpath的列。在这种情况下,还必须使用sep参数显式地指定csv分隔符。
fread_many = function(files,header=T,keep_inpath=F,sep="auto",...){
if(length(files)==0) return()
if(typeof(files)!='character') return()
files = files[file.exists(files)]
if(length(files)==0) return()
tmp = tempfile(fileext = ".csv")
if(keep_inpath==T){
stopifnot(sep!="auto")
if(header==T){
system(paste0('/usr/bin/echo -ne inpath"',sep,'" > ',tmp))
system(paste0('head -n1 ',files[1],' >> ',tmp))
system(paste0("xargs awk -vsep='",sep,"' 'BEGIN{OFS=sep}{if(FNR>1)print FILENAME,$0}' >> ",tmp),input=files)
} else {
system(paste0("xargs awk -vsep='",sep,"' 'BEGIN{OFS=sep}{print FILENAME,$0}' > ",tmp),input=files)
}
} else {
if(header==T){
system(paste0('head -n1 ',files[1],' > ',tmp))
system(paste0("xargs awk 'FNR>1' >> ",tmp),input=files)
} else {
system(paste0("xargs awk '1' > ",tmp),input=files)
}
}
DT = fread(file=tmp,header=header,sep=sep,...)
file.remove(tmp)
DT
}
注意:在读取csv之前,我的所有解决方案都假设它们都有相同的分隔符。如果不是所有的csv都使用相同的分隔符,可以分批使用rbindlist lapply fread、rbindlist mclapply fread或fread xargs cat,其中批处理中的所有csv都使用相同的分隔符。
我喜欢使用list.files(), lapply()和list2env()(或fs::dir_ls(), purrr::map()和list2env())的方法。这看起来既简单又灵活。
或者,您可以尝试小包{tor} (to-R):默认情况下,它将文件从工作目录导入到列表(list_*()变量)或全局环境(load_*()变量)。
例如,这里我使用tor::list_csv()将我工作目录中的所有.csv文件读入一个列表:
library(tor)
dir()
#> [1] "_pkgdown.yml" "cran-comments.md" "csv1.csv"
#> [4] "csv2.csv" "datasets" "DESCRIPTION"
#> [7] "docs" "inst" "LICENSE.md"
#> [10] "man" "NAMESPACE" "NEWS.md"
#> [13] "R" "README.md" "README.Rmd"
#> [16] "tests" "tmp.R" "tor.Rproj"
list_csv()
#> $csv1
#> x
#> 1 1
#> 2 2
#>
#> $csv2
#> y
#> 1 a
#> 2 b
现在我用tor::load_csv()将这些文件加载到我的全局环境中:
# The working directory contains .csv files
dir()
#> [1] "_pkgdown.yml" "cran-comments.md" "CRAN-RELEASE"
#> [4] "csv1.csv" "csv2.csv" "datasets"
#> [7] "DESCRIPTION" "docs" "inst"
#> [10] "LICENSE.md" "man" "NAMESPACE"
#> [13] "NEWS.md" "R" "README.md"
#> [16] "README.Rmd" "tests" "tmp.R"
#> [19] "tor.Rproj"
load_csv()
# Each file is now available as a dataframe in the global environment
csv1
#> x
#> 1 1
#> 2 2
csv2
#> y
#> 1 a
#> 2 b
如果您需要读取特定的文件,您可以使用regexp, ignore匹配它们的文件路径。大小写颠倒。
为了获得更大的灵活性,请使用list_any()。它允许您通过参数.f提供reader函数。
(path_csv <- tor_example("csv"))
#> [1] "C:/Users/LeporeM/Documents/R/R-3.5.2/library/tor/extdata/csv"
dir(path_csv)
#> [1] "file1.csv" "file2.csv"
list_any(path_csv, read.csv)
#> $file1
#> x
#> 1 1
#> 2 2
#>
#> $file2
#> y
#> 1 a
#> 2 b
通过…传递附加参数或者在函数内部。
path_csv %>%
list_any(readr::read_csv, skip = 1)
#> Parsed with column specification:
#> cols(
#> `1` = col_double()
#> )
#> Parsed with column specification:
#> cols(
#> a = col_character()
#> )
#> $file1
#> # A tibble: 1 x 1
#> `1`
#> <dbl>
#> 1 2
#>
#> $file2
#> # A tibble: 1 x 1
#> a
#> <chr>
#> 1 b
path_csv %>%
list_any(~read.csv(., stringsAsFactors = FALSE)) %>%
map(as_tibble)
#> $file1
#> # A tibble: 2 x 1
#> x
#> <int>
#> 1 1
#> 2 2
#>
#> $file2
#> # A tibble: 2 x 1
#> y
#> <chr>
#> 1 a
#> 2 b