假设我们有一个包含多个data.csv文件的文件夹,每个文件包含相同数量的变量,但每个变量来自不同的时间。 在R中是否有一种方法可以同时导入它们而不是逐个导入?
我的问题是我有大约2000个数据文件要导入,并且只能通过使用代码单独导入它们:
read.delim(file="filename", header=TRUE, sep="\t")
效率不高。
假设我们有一个包含多个data.csv文件的文件夹,每个文件包含相同数量的变量,但每个变量来自不同的时间。 在R中是否有一种方法可以同时导入它们而不是逐个导入?
我的问题是我有大约2000个数据文件要导入,并且只能通过使用代码单独导入它们:
read.delim(file="filename", header=TRUE, sep="\t")
效率不高。
当前回答
有人要求我将此功能添加到stackoverflow R包中。鉴于它是一个tinyverse包(不能依赖于第三方包),以下是我想到的:
#' Bulk import data files
#'
#' Read in each file at a path and then unnest them. Defaults to csv format.
#'
#' @param path a character vector of full path names
#' @param pattern an optional \link[=regex]{regular expression}. Only file names which match the regular expression will be returned.
#' @param reader a function that can read data from a file name.
#' @param ... optional arguments to pass to the reader function (eg \code{stringsAsFactors}).
#' @param reducer a function to unnest the individual data files. Use I to retain the nested structure.
#' @param recursive logical. Should the listing recurse into directories?
#'
#' @author Neal Fultz
#' @references \url{https://stackoverflow.com/questions/11433432/how-to-import-multiple-csv-files-at-once}
#'
#' @importFrom utils read.csv
#' @export
read.directory <- function(path='.', pattern=NULL, reader=read.csv, ...,
reducer=function(dfs) do.call(rbind.data.frame, dfs), recursive=FALSE) {
files <- list.files(path, pattern, full.names = TRUE, recursive = recursive)
reducer(lapply(files, reader, ...))
}
通过参数化读卡器和减速器功能,人们可以使用数据。table或dplyr(如果他们选择的话),或者只使用适用于较小数据集的基本R函数。
其他回答
如下所示,每个数据帧都应该作为单个列表中的单独元素:
temp = list.files(pattern="*.csv")
myfiles = lapply(temp, read.delim)
这里假设您将这些csv文件放在一个目录(您当前的工作目录)中,并且它们都具有小写扩展名.csv。
如果你想把这些数据帧组合成一个单一的数据帧,请参考其他答案中的解决方案,如do.call(rbind,…),dplyr::bind_rows()或data.table::rbindlist()。
如果你真的想要每个数据帧在一个单独的对象中,即使这通常是不可取的,你可以使用assign执行以下操作:
temp = list.files(pattern="*.csv")
for (i in 1:length(temp)) assign(temp[i], read.csv(temp[i]))
或者,不带赋值,并演示(1)如何清理文件名以及(2)如何使用list2env,您可以尝试以下方法:
temp = list.files(pattern="*.csv")
list2env(
lapply(setNames(temp, make.names(gsub("*.csv$", "", temp))),
read.csv), envir = .GlobalEnv)
但是,最好还是把它们放在一个列表中。
在我看来,大多数其他答案都被里约热内卢::import_list淘汰了,这是一个简洁的一行程序:
library(rio)
my_data <- import_list(dir("path_to_directory", pattern = ".csv"), rbind = TRUE)
任何额外的参数都传递给里约热内卢::import。里约热内卢几乎可以处理R可以读取的任何文件格式,而且它使用数据。桌子的fread在可能的地方,所以它也应该快。
只要你的电脑有多个核,下面的代码就能让你以最快的速度处理大数据:
if (!require("pacman")) install.packages("pacman")
pacman::p_load(doParallel, data.table, stringr)
# get the file name
dir() %>% str_subset("\\.csv$") -> fn
# use parallel setting
(cl <- detectCores() %>%
makeCluster()) %>%
registerDoParallel()
# read and bind all files together
system.time({
big_df <- foreach(
i = fn,
.packages = "data.table"
) %dopar%
{
fread(i, colClasses = "character")
} %>%
rbindlist(fill = TRUE)
})
# end of parallel work
stopImplicitCluster(cl)
更新于20/04/16: 当我发现一个可用于并行计算的新包时,使用以下代码提供了一个替代解决方案。
if (!require("pacman")) install.packages("pacman")
pacman::p_load(future.apply, data.table, stringr)
# get the file name
dir() %>% str_subset("\\.csv$") -> fn
plan(multiprocess)
future_lapply(fn,fread,colClasses = "character") %>%
rbindlist(fill = TRUE) -> res
# res is the merged data.table
除了使用lapply或R中的其他循环构造,您还可以将CSV文件合并到一个文件中。
在Unix中,如果文件没有头文件,那么很简单:
cat *.csv > all.csv
或者如果有标题,你可以找到一个字符串匹配标题,只有标题(即假设标题行都以“年龄”开头),你会这样做:
cat *.csv | grep -v ^Age > all.csv
我认为在Windows中,你可以通过DOS命令框中的COPY和SEARCH(或FIND或其他什么)来做到这一点,但为什么不安装cygwin并获得Unix命令shell的强大功能呢?
这是我开发的代码,读取所有csv文件到R.它将为每个csv文件单独创建一个dataframe,并标题dataframe文件的原始名称(删除空格和.csv),我希望你发现它有用!
path <- "C:/Users/cfees/My Box Files/Fitness/"
files <- list.files(path=path, pattern="*.csv")
for(file in files)
{
perpos <- which(strsplit(file, "")[[1]]==".")
assign(
gsub(" ","",substr(file, 1, perpos-1)),
read.csv(paste(path,file,sep="")))
}