假设我们有一个包含多个data.csv文件的文件夹,每个文件包含相同数量的变量,但每个变量来自不同的时间。 在R中是否有一种方法可以同时导入它们而不是逐个导入?
我的问题是我有大约2000个数据文件要导入,并且只能通过使用代码单独导入它们:
read.delim(file="filename", header=TRUE, sep="\t")
效率不高。
假设我们有一个包含多个data.csv文件的文件夹,每个文件包含相同数量的变量,但每个变量来自不同的时间。 在R中是否有一种方法可以同时导入它们而不是逐个导入?
我的问题是我有大约2000个数据文件要导入,并且只能通过使用代码单独导入它们:
read.delim(file="filename", header=TRUE, sep="\t")
效率不高。
当前回答
使用plyr::ldply,在读取400个csv文件时,通过启用.parallel选项,大约可以提高50%的速度,每个文件大约30-40 MB。示例包括一个文本进度条。
library(plyr)
library(data.table)
library(doSNOW)
csv.list <- list.files(path="t:/data", pattern=".csv$", full.names=TRUE)
cl <- makeCluster(4)
registerDoSNOW(cl)
pb <- txtProgressBar(max=length(csv.list), style=3)
pbu <- function(i) setTxtProgressBar(pb, i)
dt <- setDT(ldply(csv.list, fread, .parallel=TRUE, .paropts=list(.options.snow=list(progress=pbu))))
stopCluster(cl)
其他回答
基于dnlbrk的注释,对于大文件,assign可以比list2env快得多。
library(readr)
library(stringr)
List_of_file_paths <- list.files(path ="C:/Users/Anon/Documents/Folder_with_csv_files/", pattern = ".csv", all.files = TRUE, full.names = TRUE)
通过将full.names参数设置为true,您将在文件列表中获得每个文件的完整路径作为单独的字符串,例如,List_of_file_paths[1]将类似于"C:/Users/Anon/Documents/Folder_with_csv_files/ fil1 .csv"
for(f in 1:length(List_of_filepaths)) {
file_name <- str_sub(string = List_of_filepaths[f], start = 46, end = -5)
file_df <- read_csv(List_of_filepaths[f])
assign( x = file_name, value = file_df, envir = .GlobalEnv)
}
你可以利用这些数据。table package的fread或base R read.csv而不是read_csv。file_name步骤允许您整理名称,以便每个数据帧不保留文件的完整路径作为其名称。 在将数据表传输到全局环境之前,您可以扩展循环对数据表做进一步的处理,例如:
for(f in 1:length(List_of_filepaths)) {
file_name <- str_sub(string = List_of_filepaths[f], start = 46, end = -5)
file_df <- read_csv(List_of_filepaths[f])
file_df <- file_df[,1:3] #if you only need the first three columns
assign( x = file_name, value = file_df, envir = .GlobalEnv)
}
使用plyr::ldply,在读取400个csv文件时,通过启用.parallel选项,大约可以提高50%的速度,每个文件大约30-40 MB。示例包括一个文本进度条。
library(plyr)
library(data.table)
library(doSNOW)
csv.list <- list.files(path="t:/data", pattern=".csv$", full.names=TRUE)
cl <- makeCluster(4)
registerDoSNOW(cl)
pb <- txtProgressBar(max=length(csv.list), style=3)
pbu <- function(i) setTxtProgressBar(pb, i)
dt <- setDT(ldply(csv.list, fread, .parallel=TRUE, .paropts=list(.options.snow=list(progress=pbu))))
stopCluster(cl)
这是我开发的代码,读取所有csv文件到R.它将为每个csv文件单独创建一个dataframe,并标题dataframe文件的原始名称(删除空格和.csv),我希望你发现它有用!
path <- "C:/Users/cfees/My Box Files/Fitness/"
files <- list.files(path=path, pattern="*.csv")
for(file in files)
{
perpos <- which(strsplit(file, "")[[1]]==".")
assign(
gsub(" ","",substr(file, 1, perpos-1)),
read.csv(paste(path,file,sep="")))
}
使用purrr并将文件id作为列:
library(tidyverse)
p <- "my/directory"
files <- list.files(p, pattern="csv", full.names=TRUE) %>%
set_names()
merged <- files %>% map_dfr(read_csv, .id="filename")
如果没有set_names(), .id=将使用整数指示符,而不是实际的文件名。
如果你想要一个短的文件名而不是完整的路径:
merged <- merged %>% mutate(filename=basename(filename))
有人要求我将此功能添加到stackoverflow R包中。鉴于它是一个tinyverse包(不能依赖于第三方包),以下是我想到的:
#' Bulk import data files
#'
#' Read in each file at a path and then unnest them. Defaults to csv format.
#'
#' @param path a character vector of full path names
#' @param pattern an optional \link[=regex]{regular expression}. Only file names which match the regular expression will be returned.
#' @param reader a function that can read data from a file name.
#' @param ... optional arguments to pass to the reader function (eg \code{stringsAsFactors}).
#' @param reducer a function to unnest the individual data files. Use I to retain the nested structure.
#' @param recursive logical. Should the listing recurse into directories?
#'
#' @author Neal Fultz
#' @references \url{https://stackoverflow.com/questions/11433432/how-to-import-multiple-csv-files-at-once}
#'
#' @importFrom utils read.csv
#' @export
read.directory <- function(path='.', pattern=NULL, reader=read.csv, ...,
reducer=function(dfs) do.call(rbind.data.frame, dfs), recursive=FALSE) {
files <- list.files(path, pattern, full.names = TRUE, recursive = recursive)
reducer(lapply(files, reader, ...))
}
通过参数化读卡器和减速器功能,人们可以使用数据。table或dplyr(如果他们选择的话),或者只使用适用于较小数据集的基本R函数。