假设我们有一个包含多个data.csv文件的文件夹,每个文件包含相同数量的变量,但每个变量来自不同的时间。 在R中是否有一种方法可以同时导入它们而不是逐个导入?
我的问题是我有大约2000个数据文件要导入,并且只能通过使用代码单独导入它们:
read.delim(file="filename", header=TRUE, sep="\t")
效率不高。
假设我们有一个包含多个data.csv文件的文件夹,每个文件包含相同数量的变量,但每个变量来自不同的时间。 在R中是否有一种方法可以同时导入它们而不是逐个导入?
我的问题是我有大约2000个数据文件要导入,并且只能通过使用代码单独导入它们:
read.delim(file="filename", header=TRUE, sep="\t")
效率不高。
当前回答
使用plyr::ldply,在读取400个csv文件时,通过启用.parallel选项,大约可以提高50%的速度,每个文件大约30-40 MB。示例包括一个文本进度条。
library(plyr)
library(data.table)
library(doSNOW)
csv.list <- list.files(path="t:/data", pattern=".csv$", full.names=TRUE)
cl <- makeCluster(4)
registerDoSNOW(cl)
pb <- txtProgressBar(max=length(csv.list), style=3)
pbu <- function(i) setTxtProgressBar(pb, i)
dt <- setDT(ldply(csv.list, fread, .parallel=TRUE, .paropts=list(.options.snow=list(progress=pbu))))
stopCluster(cl)
其他回答
如下所示,每个数据帧都应该作为单个列表中的单独元素:
temp = list.files(pattern="*.csv")
myfiles = lapply(temp, read.delim)
这里假设您将这些csv文件放在一个目录(您当前的工作目录)中,并且它们都具有小写扩展名.csv。
如果你想把这些数据帧组合成一个单一的数据帧,请参考其他答案中的解决方案,如do.call(rbind,…),dplyr::bind_rows()或data.table::rbindlist()。
如果你真的想要每个数据帧在一个单独的对象中,即使这通常是不可取的,你可以使用assign执行以下操作:
temp = list.files(pattern="*.csv")
for (i in 1:length(temp)) assign(temp[i], read.csv(temp[i]))
或者,不带赋值,并演示(1)如何清理文件名以及(2)如何使用list2env,您可以尝试以下方法:
temp = list.files(pattern="*.csv")
list2env(
lapply(setNames(temp, make.names(gsub("*.csv$", "", temp))),
read.csv), envir = .GlobalEnv)
但是,最好还是把它们放在一个列表中。
在我看来,大多数其他答案都被里约热内卢::import_list淘汰了,这是一个简洁的一行程序:
library(rio)
my_data <- import_list(dir("path_to_directory", pattern = ".csv"), rbind = TRUE)
任何额外的参数都传递给里约热内卢::import。里约热内卢几乎可以处理R可以读取的任何文件格式,而且它使用数据。桌子的fread在可能的地方,所以它也应该快。
这是我读取多个文件并将它们组合成1个数据帧的具体示例:
path<- file.path("C:/folder/subfolder")
files <- list.files(path=path, pattern="/*.csv",full.names = T)
library(data.table)
data = do.call(rbind, lapply(files, function(x) read.csv(x, stringsAsFactors = FALSE)))
使用purrr并将文件id作为列:
library(tidyverse)
p <- "my/directory"
files <- list.files(p, pattern="csv", full.names=TRUE) %>%
set_names()
merged <- files %>% map_dfr(read_csv, .id="filename")
如果没有set_names(), .id=将使用整数指示符,而不是实际的文件名。
如果你想要一个短的文件名而不是完整的路径:
merged <- merged %>% mutate(filename=basename(filename))
使用readr 2.0.0以后,您可以一次读取多个文件,只需提供文件参数的路径列表。下面是一个使用readr::read_csv()的示例。
packageVersion("readr")
#> [1] '2.0.1'
library(readr)
library(fs)
# create files to read in
write_csv(read_csv("1, 2 \n 3, 4", col_names = c("x", "y")), file = "file1.csv")
write_csv(read_csv("5, 6 \n 7, 8", col_names = c("x", "y")), file = "file2.csv")
# get a list of files
files <- dir_ls(".", glob = "file*csv")
files
#> file1.csv file2.csv
# read them in at once
# record paths in a column called filename
read_csv(files, id = "filename")
#> # A tibble: 4 × 3
#> filename x y
#> <chr> <dbl> <dbl>
#> 1 file1.csv 1 2
#> 2 file1.csv 3 4
#> 3 file2.csv 5 6
#> 4 file2.csv 7 8
由reprex包于2021-09-16创建(v2.0.1)