假设我们有一个包含多个data.csv文件的文件夹,每个文件包含相同数量的变量,但每个变量来自不同的时间。 在R中是否有一种方法可以同时导入它们而不是逐个导入?

我的问题是我有大约2000个数据文件要导入,并且只能通过使用代码单独导入它们:

read.delim(file="filename", header=TRUE, sep="\t")

效率不高。


当前回答

这是我开发的代码,读取所有csv文件到R.它将为每个csv文件单独创建一个dataframe,并标题dataframe文件的原始名称(删除空格和.csv),我希望你发现它有用!

path <- "C:/Users/cfees/My Box Files/Fitness/"
files <- list.files(path=path, pattern="*.csv")
for(file in files)
{
perpos <- which(strsplit(file, "")[[1]]==".")
assign(
gsub(" ","",substr(file, 1, perpos-1)), 
read.csv(paste(path,file,sep="")))
}

其他回答

这是我读取多个文件并将它们组合成1个数据帧的具体示例:

path<- file.path("C:/folder/subfolder")
files <- list.files(path=path, pattern="/*.csv",full.names = T)
library(data.table)
data = do.call(rbind, lapply(files, function(x) read.csv(x, stringsAsFactors = FALSE)))

基于dnlbrk的注释,对于大文件,assign可以比list2env快得多。

library(readr)
library(stringr)

List_of_file_paths <- list.files(path ="C:/Users/Anon/Documents/Folder_with_csv_files/", pattern = ".csv", all.files = TRUE, full.names = TRUE)

通过将full.names参数设置为true,您将在文件列表中获得每个文件的完整路径作为单独的字符串,例如,List_of_file_paths[1]将类似于"C:/Users/Anon/Documents/Folder_with_csv_files/ fil1 .csv"

for(f in 1:length(List_of_filepaths)) {
  file_name <- str_sub(string = List_of_filepaths[f], start = 46, end = -5)
  file_df <- read_csv(List_of_filepaths[f])  
  assign( x = file_name, value = file_df, envir = .GlobalEnv)
}

你可以利用这些数据。table package的fread或base R read.csv而不是read_csv。file_name步骤允许您整理名称,以便每个数据帧不保留文件的完整路径作为其名称。 在将数据表传输到全局环境之前,您可以扩展循环对数据表做进一步的处理,例如:

for(f in 1:length(List_of_filepaths)) {
  file_name <- str_sub(string = List_of_filepaths[f], start = 46, end = -5)
  file_df <- read_csv(List_of_filepaths[f])  
  file_df <- file_df[,1:3] #if you only need the first three columns
  assign( x = file_name, value = file_df, envir = .GlobalEnv)
}

下面是一些使用R base将.csv文件转换为data.frame的选项,以及一些可用来读取R文件的包。

这比下面的选项要慢。

# Get the files names
files = list.files(pattern="*.csv")
# First apply read.csv, then rbind
myfiles = do.call(rbind, lapply(files, function(x) read.csv(x, stringsAsFactors = FALSE)))

编辑:-更多的额外选择使用数据。表和读取器

一个fread()版本,它是数据的函数。表方案。这是目前为止R中最快的选项。

library(data.table)
DT = do.call(rbind, lapply(files, fread))
# The same using `rbindlist`
DT = rbindlist(lapply(files, fread))

使用readr,这是另一个读取csv文件的包。它比fread慢,比base R快,但功能不同。

library(readr)
library(dplyr)
tbl = lapply(files, read_csv) %>% bind_rows()

一个快速而简洁的解决方案: (比Base R的read.csv快两倍多)

tbl <-
    list.files(pattern = "*.csv") %>% 
    map_df(~read_csv(.))

和数据。Table的fread()甚至可以再次将加载时间减少一半。(1/4底R乘以)

library(data.table)

tbl_fread <- 
    list.files(pattern = "*.csv") %>% 
    map_df(~fread(.))

stringsAsFactors = FALSE参数保持数据帧因子不受影响(正如marbel指出的那样,这是fread的默认设置)。

如果类型转换不够厚颜无耻,可以使用col_types参数强制所有列都是字符。

tbl <-
    list.files(pattern = "*.csv") %>% 
    map_df(~read_csv(., col_types = cols(.default = "c")))

如果您想要深入子目录来构造最终要绑定的文件列表,那么请确保包含路径名,并在列表中以文件的全名注册这些文件。这将允许绑定工作在当前目录之外进行。(将完整的路径名视为护照,允许跨目录“边界”返回。)

tbl <-
    list.files(path = "./subdirectory/",
               pattern = "*.csv", 
               full.names = T) %>% 
    map_df(~read_csv(., col_types = cols(.default = "c"))) 

正如Hadley在这里描述的(大约在中间):

Map_df (x, f)实际上与do相同。调用("rbind", lapply(x, f))....

额外功能-添加文件名的记录每尼克功能请求在评论下面: *为每条记录添加原始文件名。

代码解释:创建一个函数,在初始读取表期间将文件名附加到每个记录。然后使用该函数而不是简单的read_csv()函数。

read_plus <- function(flnm) {
    read_csv(flnm) %>% 
        mutate(filename = flnm)
}

tbl_with_sources <-
    list.files(pattern = "*.csv", 
               full.names = T) %>% 
    map_df(~read_plus(.))

(类型强制转换和子目录处理方法也可以在read_plus()函数中以与上面建议的第二个和第三个变体相同的方式进行处理。)

### Benchmark Code & Results 
library(tidyverse)
library(data.table)
library(microbenchmark)

### Base R Approaches
#### Instead of a dataframe, this approach creates a list of lists
#### removed from analysis as this alone doubled analysis time reqd
# lapply_read.delim <- function(path, pattern = "*.csv") {
#     temp = list.files(path, pattern, full.names = TRUE)
#     myfiles = lapply(temp, read.delim)
# }

#### `read.csv()`
do.call_rbind_read.csv <- function(path, pattern = "*.csv") {
    files = list.files(path, pattern, full.names = TRUE)
    do.call(rbind, lapply(files, function(x) read.csv(x, stringsAsFactors = FALSE)))
}

map_df_read.csv <- function(path, pattern = "*.csv") {
    list.files(path, pattern, full.names = TRUE) %>% 
    map_df(~read.csv(., stringsAsFactors = FALSE))
}


### *dplyr()*
#### `read_csv()`
lapply_read_csv_bind_rows <- function(path, pattern = "*.csv") {
    files = list.files(path, pattern, full.names = TRUE)
    lapply(files, read_csv) %>% bind_rows()
}

map_df_read_csv <- function(path, pattern = "*.csv") {
    list.files(path, pattern, full.names = TRUE) %>% 
    map_df(~read_csv(., col_types = cols(.default = "c")))
}

### *data.table* / *purrr* hybrid
map_df_fread <- function(path, pattern = "*.csv") {
    list.files(path, pattern, full.names = TRUE) %>% 
    map_df(~fread(.))
}

### *data.table*
rbindlist_fread <- function(path, pattern = "*.csv") {
    files = list.files(path, pattern, full.names = TRUE)
    rbindlist(lapply(files, function(x) fread(x)))
}

do.call_rbind_fread <- function(path, pattern = "*.csv") {
    files = list.files(path, pattern, full.names = TRUE)
    do.call(rbind, lapply(files, function(x) fread(x, stringsAsFactors = FALSE)))
}


read_results <- function(dir_size){
    microbenchmark(
        # lapply_read.delim = lapply_read.delim(dir_size), # too slow to include in benchmarks
        do.call_rbind_read.csv = do.call_rbind_read.csv(dir_size),
        map_df_read.csv = map_df_read.csv(dir_size),
        lapply_read_csv_bind_rows = lapply_read_csv_bind_rows(dir_size),
        map_df_read_csv = map_df_read_csv(dir_size),
        rbindlist_fread = rbindlist_fread(dir_size),
        do.call_rbind_fread = do.call_rbind_fread(dir_size),
        map_df_fread = map_df_fread(dir_size),
        times = 10L) 
}

read_results_lrg_mid_mid <- read_results('./testFolder/500MB_12.5MB_40files')
print(read_results_lrg_mid_mid, digits = 3)

read_results_sml_mic_mny <- read_results('./testFolder/5MB_5KB_1000files/')
read_results_sml_tny_mod <- read_results('./testFolder/5MB_50KB_100files/')
read_results_sml_sml_few <- read_results('./testFolder/5MB_500KB_10files/')

read_results_med_sml_mny <- read_results('./testFolder/50MB_5OKB_1000files')
read_results_med_sml_mod <- read_results('./testFolder/50MB_5OOKB_100files')
read_results_med_med_few <- read_results('./testFolder/50MB_5MB_10files')

read_results_lrg_sml_mny <- read_results('./testFolder/500MB_500KB_1000files')
read_results_lrg_med_mod <- read_results('./testFolder/500MB_5MB_100files')
read_results_lrg_lrg_few <- read_results('./testFolder/500MB_50MB_10files')

read_results_xlg_lrg_mod <- read_results('./testFolder/5000MB_50MB_100files')


print(read_results_sml_mic_mny, digits = 3)
print(read_results_sml_tny_mod, digits = 3)
print(read_results_sml_sml_few, digits = 3)

print(read_results_med_sml_mny, digits = 3)
print(read_results_med_sml_mod, digits = 3)
print(read_results_med_med_few, digits = 3)

print(read_results_lrg_sml_mny, digits = 3)
print(read_results_lrg_med_mod, digits = 3)
print(read_results_lrg_lrg_few, digits = 3)

print(read_results_xlg_lrg_mod, digits = 3)

# display boxplot of my typical use case results & basic machine max load
par(oma = c(0,0,0,0)) # remove overall margins if present
par(mfcol = c(1,1)) # remove grid if present
par(mar = c(12,5,1,1) + 0.1) # to display just a single boxplot with its complete labels
boxplot(read_results_lrg_mid_mid, las = 2, xlab = "", ylab = "Duration (seconds)", main = "40 files @ 12.5MB (500MB)")
boxplot(read_results_xlg_lrg_mod, las = 2, xlab = "", ylab = "Duration (seconds)", main = "100 files @ 50MB (5GB)")

# generate 3x3 grid boxplots
par(oma = c(12,1,1,1)) # margins for the whole 3 x 3 grid plot
par(mfcol = c(3,3)) # create grid (filling down each column)
par(mar = c(1,4,2,1)) # margins for the individual plots in 3 x 3 grid
boxplot(read_results_sml_mic_mny, las = 2, xlab = "", ylab = "Duration (seconds)", main = "1000 files @ 5KB (5MB)", xaxt = 'n')
boxplot(read_results_sml_tny_mod, las = 2, xlab = "", ylab = "Duration (milliseconds)", main = "100 files @ 50KB (5MB)", xaxt = 'n')
boxplot(read_results_sml_sml_few, las = 2, xlab = "", ylab = "Duration (milliseconds)", main = "10 files @ 500KB (5MB)",)

boxplot(read_results_med_sml_mny, las = 2, xlab = "", ylab = "Duration (microseconds)        ", main = "1000 files @ 50KB (50MB)", xaxt = 'n')
boxplot(read_results_med_sml_mod, las = 2, xlab = "", ylab = "Duration (microseconds)", main = "100 files @ 500KB (50MB)", xaxt = 'n')
boxplot(read_results_med_med_few, las = 2, xlab = "", ylab = "Duration (seconds)", main = "10 files @ 5MB (50MB)")

boxplot(read_results_lrg_sml_mny, las = 2, xlab = "", ylab = "Duration (seconds)", main = "1000 files @ 500KB (500MB)", xaxt = 'n')
boxplot(read_results_lrg_med_mod, las = 2, xlab = "", ylab = "Duration (seconds)", main = "100 files @ 5MB (500MB)", xaxt = 'n')
boxplot(read_results_lrg_lrg_few, las = 2, xlab = "", ylab = "Duration (seconds)", main = "10 files @ 50MB (500MB)")

中等用例

更大的用例

用例的多样性

行:文件计数(1000,100,10) 列:最终数据帧大小(5MB, 50MB, 500MB) (点击图片查看原始尺寸)

在最小的用例中,使用purrr和dplyr的C库带来的开销超过了执行大规模处理任务时所观察到的性能收益,因此基本R结果更好。

如果您想运行自己的测试,您可能会发现这个bash脚本很有帮助。

for ((i=1; i<=$2; i++)); do 
  cp "$1" "${1:0:8}_${i}.csv";
done

bash what_you_name_this_script.sh " filename_you_want_copies " 100将创建100份按顺序编号的文件(在文件名的前8个字符和下划线之后)。

归因和欣赏

特别感谢:

Tyler Rinker和Akrun演示了微基准测试。 Jake Kaupp向我介绍了map_df()。 David McLaughlin提供了关于改进可视化和讨论/确认在小文件、小数据框架分析结果中观察到的性能反转的有用反馈。 Marbel指出了fread()的默认行为。(我需要研究一下数据表。)

使用purrr并将文件id作为列:

library(tidyverse)


p <- "my/directory"
files <- list.files(p, pattern="csv", full.names=TRUE) %>%
    set_names()
merged <- files %>% map_dfr(read_csv, .id="filename")

如果没有set_names(), .id=将使用整数指示符,而不是实际的文件名。

如果你想要一个短的文件名而不是完整的路径:

merged <- merged %>% mutate(filename=basename(filename))