假设我们有一个包含多个data.csv文件的文件夹,每个文件包含相同数量的变量,但每个变量来自不同的时间。 在R中是否有一种方法可以同时导入它们而不是逐个导入?

我的问题是我有大约2000个数据文件要导入,并且只能通过使用代码单独导入它们:

read.delim(file="filename", header=TRUE, sep="\t")

效率不高。


当前回答

只要你的电脑有多个核,下面的代码就能让你以最快的速度处理大数据:

if (!require("pacman")) install.packages("pacman")
pacman::p_load(doParallel, data.table, stringr)

# get the file name
dir() %>% str_subset("\\.csv$") -> fn

# use parallel setting
(cl <- detectCores() %>%
  makeCluster()) %>%
  registerDoParallel()

# read and bind all files together
system.time({
  big_df <- foreach(
    i = fn,
    .packages = "data.table"
  ) %dopar%
    {
      fread(i, colClasses = "character")
    } %>%
    rbindlist(fill = TRUE)
})

# end of parallel work
stopImplicitCluster(cl)

更新于20/04/16: 当我发现一个可用于并行计算的新包时,使用以下代码提供了一个替代解决方案。

if (!require("pacman")) install.packages("pacman")
pacman::p_load(future.apply, data.table, stringr)

# get the file name
dir() %>% str_subset("\\.csv$") -> fn

plan(multiprocess)

future_lapply(fn,fread,colClasses = "character") %>% 
  rbindlist(fill = TRUE) -> res

# res is the merged data.table

其他回答

下面是一些使用R base将.csv文件转换为data.frame的选项,以及一些可用来读取R文件的包。

这比下面的选项要慢。

# Get the files names
files = list.files(pattern="*.csv")
# First apply read.csv, then rbind
myfiles = do.call(rbind, lapply(files, function(x) read.csv(x, stringsAsFactors = FALSE)))

编辑:-更多的额外选择使用数据。表和读取器

一个fread()版本,它是数据的函数。表方案。这是目前为止R中最快的选项。

library(data.table)
DT = do.call(rbind, lapply(files, fread))
# The same using `rbindlist`
DT = rbindlist(lapply(files, fread))

使用readr,这是另一个读取csv文件的包。它比fread慢,比base R快,但功能不同。

library(readr)
library(dplyr)
tbl = lapply(files, read_csv) %>% bind_rows()

如下所示,每个数据帧都应该作为单个列表中的单独元素:

temp = list.files(pattern="*.csv")
myfiles = lapply(temp, read.delim)

这里假设您将这些csv文件放在一个目录(您当前的工作目录)中,并且它们都具有小写扩展名.csv。

如果你想把这些数据帧组合成一个单一的数据帧,请参考其他答案中的解决方案,如do.call(rbind,…),dplyr::bind_rows()或data.table::rbindlist()。

如果你真的想要每个数据帧在一个单独的对象中,即使这通常是不可取的,你可以使用assign执行以下操作:

temp = list.files(pattern="*.csv")
for (i in 1:length(temp)) assign(temp[i], read.csv(temp[i]))

或者,不带赋值,并演示(1)如何清理文件名以及(2)如何使用list2env,您可以尝试以下方法:

temp = list.files(pattern="*.csv")
list2env(
  lapply(setNames(temp, make.names(gsub("*.csv$", "", temp))), 
         read.csv), envir = .GlobalEnv)

但是,最好还是把它们放在一个列表中。

除了使用lapply或R中的其他循环构造,您还可以将CSV文件合并到一个文件中。

在Unix中,如果文件没有头文件,那么很简单:

cat *.csv > all.csv

或者如果有标题,你可以找到一个字符串匹配标题,只有标题(即假设标题行都以“年龄”开头),你会这样做:

cat *.csv | grep -v ^Age > all.csv

我认为在Windows中,你可以通过DOS命令框中的COPY和SEARCH(或FIND或其他什么)来做到这一点,但为什么不安装cygwin并获得Unix命令shell的强大功能呢?

使用readr 2.0.0以后,您可以一次读取多个文件,只需提供文件参数的路径列表。下面是一个使用readr::read_csv()的示例。

packageVersion("readr")
#> [1] '2.0.1'
library(readr)
library(fs)

# create files to read in
write_csv(read_csv("1, 2 \n 3, 4", col_names = c("x", "y")), file = "file1.csv")
write_csv(read_csv("5, 6 \n 7, 8", col_names = c("x", "y")), file = "file2.csv")

# get a list of files
files <- dir_ls(".", glob = "file*csv")
files
#> file1.csv file2.csv

# read them in at once
# record paths in a column called filename
read_csv(files, id = "filename")
#> # A tibble: 4 × 3
#>   filename      x     y
#>   <chr>     <dbl> <dbl>
#> 1 file1.csv     1     2
#> 2 file1.csv     3     4
#> 3 file2.csv     5     6
#> 4 file2.csv     7     8

由reprex包于2021-09-16创建(v2.0.1)

这是我开发的代码,读取所有csv文件到R.它将为每个csv文件单独创建一个dataframe,并标题dataframe文件的原始名称(删除空格和.csv),我希望你发现它有用!

path <- "C:/Users/cfees/My Box Files/Fitness/"
files <- list.files(path=path, pattern="*.csv")
for(file in files)
{
perpos <- which(strsplit(file, "")[[1]]==".")
assign(
gsub(" ","",substr(file, 1, perpos-1)), 
read.csv(paste(path,file,sep="")))
}