实现以下目标最有效的算法是什么:

0010 0000 => 0000 0100

从MSB->LSB转换为LSB->MSB。所有位都必须反转;也就是说,这不是字节交换。


当前回答

当然,玩弄比特的黑客的明显来源是: http://graphics.stanford.edu/~seander/bithacks.html#BitReverseObvious

其他回答

// Purpose: to reverse bits in an unsigned short integer 
// Input: an unsigned short integer whose bits are to be reversed
// Output: an unsigned short integer with the reversed bits of the input one
unsigned short ReverseBits( unsigned short a )
{
     // declare and initialize number of bits in the unsigned short integer
     const char num_bits = sizeof(a) * CHAR_BIT;

     // declare and initialize bitset representation of integer a
     bitset<num_bits> bitset_a(a);          

     // declare and initialize bitset representation of integer b (0000000000000000)
     bitset<num_bits> bitset_b(0);                  

     // declare and initialize bitset representation of mask (0000000000000001)
     bitset<num_bits> mask(1);          

     for ( char i = 0; i < num_bits; ++i )
     {
          bitset_b = (bitset_b << 1) | bitset_a & mask;
          bitset_a >>= 1;
     }

     return (unsigned short) bitset_b.to_ulong();
}

void PrintBits( unsigned short a )
{
     // declare and initialize bitset representation of a
     bitset<sizeof(a) * CHAR_BIT> bitset(a);

     // print out bits
     cout << bitset << endl;
}


// Testing the functionality of the code

int main ()
{
     unsigned short a = 17, b;

     cout << "Original: "; 
     PrintBits(a);

     b = ReverseBits( a );

     cout << "Reversed: ";
     PrintBits(b);
}

// Output:
Original: 0000000000010001
Reversed: 1000100000000000

我很好奇原始旋转有多快。 在我的机器(i7@2600)上,1,500,150,000次迭代的平均值为27.28 ns(在131,071个64位整数的随机集上)。

优点:占用内存少,代码简单。我想说它也没有那么大。对于任何输入(128个算术SHIFT运算+ 64个逻辑and运算+ 64个逻辑OR运算),所需的时间都是可预测的常量。

我比较了@Matt J获得的最佳时间,他有公认的答案。如果我没有看错他的答案,他得到的最好结果是0.631739秒,100万次迭代,这导致平均每次旋转631 ns。

我使用的代码片段如下:

unsigned long long reverse_long(unsigned long long x)
{
    return (((x >> 0) & 1) << 63) |
           (((x >> 1) & 1) << 62) |
           (((x >> 2) & 1) << 61) |
           (((x >> 3) & 1) << 60) |
           (((x >> 4) & 1) << 59) |
           (((x >> 5) & 1) << 58) |
           (((x >> 6) & 1) << 57) |
           (((x >> 7) & 1) << 56) |
           (((x >> 8) & 1) << 55) |
           (((x >> 9) & 1) << 54) |
           (((x >> 10) & 1) << 53) |
           (((x >> 11) & 1) << 52) |
           (((x >> 12) & 1) << 51) |
           (((x >> 13) & 1) << 50) |
           (((x >> 14) & 1) << 49) |
           (((x >> 15) & 1) << 48) |
           (((x >> 16) & 1) << 47) |
           (((x >> 17) & 1) << 46) |
           (((x >> 18) & 1) << 45) |
           (((x >> 19) & 1) << 44) |
           (((x >> 20) & 1) << 43) |
           (((x >> 21) & 1) << 42) |
           (((x >> 22) & 1) << 41) |
           (((x >> 23) & 1) << 40) |
           (((x >> 24) & 1) << 39) |
           (((x >> 25) & 1) << 38) |
           (((x >> 26) & 1) << 37) |
           (((x >> 27) & 1) << 36) |
           (((x >> 28) & 1) << 35) |
           (((x >> 29) & 1) << 34) |
           (((x >> 30) & 1) << 33) |
           (((x >> 31) & 1) << 32) |
           (((x >> 32) & 1) << 31) |
           (((x >> 33) & 1) << 30) |
           (((x >> 34) & 1) << 29) |
           (((x >> 35) & 1) << 28) |
           (((x >> 36) & 1) << 27) |
           (((x >> 37) & 1) << 26) |
           (((x >> 38) & 1) << 25) |
           (((x >> 39) & 1) << 24) |
           (((x >> 40) & 1) << 23) |
           (((x >> 41) & 1) << 22) |
           (((x >> 42) & 1) << 21) |
           (((x >> 43) & 1) << 20) |
           (((x >> 44) & 1) << 19) |
           (((x >> 45) & 1) << 18) |
           (((x >> 46) & 1) << 17) |
           (((x >> 47) & 1) << 16) |
           (((x >> 48) & 1) << 15) |
           (((x >> 49) & 1) << 14) |
           (((x >> 50) & 1) << 13) |
           (((x >> 51) & 1) << 12) |
           (((x >> 52) & 1) << 11) |
           (((x >> 53) & 1) << 10) |
           (((x >> 54) & 1) << 9) |
           (((x >> 55) & 1) << 8) |
           (((x >> 56) & 1) << 7) |
           (((x >> 57) & 1) << 6) |
           (((x >> 58) & 1) << 5) |
           (((x >> 59) & 1) << 4) |
           (((x >> 60) & 1) << 3) |
           (((x >> 61) & 1) << 2) |
           (((x >> 62) & 1) << 1) |
           (((x >> 63) & 1) << 0);
}

我认为下面是我所知道的最简单的方法。MSB是输入,LSB是“反向”输出:

unsigned char rev(char MSB) {
    unsigned char LSB=0;  // for output
    _FOR(i,0,8) {
        LSB= LSB << 1;
        if(MSB&1) LSB = LSB | 1;
        MSB= MSB >> 1;
    }
    return LSB;
}

//    It works by rotating bytes in opposite directions. 
//    Just repeat for each byte.

下面这个怎么样:

    uint reverseMSBToLSB32ui(uint input)
    {
        uint output = 0x00000000;
        uint toANDVar = 0;
        int places = 0;

        for (int i = 1; i < 32; i++)
        {
            places = (32 - i);
            toANDVar = (uint)(1 << places);
            output |= (uint)(input & (toANDVar)) >> places;

        }


        return output;
    }

小而简单(不过只有32位)。

您可能希望使用标准模板库。它可能比上面提到的代码慢。然而,在我看来,这似乎更清楚,更容易理解。

 #include<bitset>
 #include<iostream>


 template<size_t N>
 const std::bitset<N> reverse(const std::bitset<N>& ordered)
 {
      std::bitset<N> reversed;
      for(size_t i = 0, j = N - 1; i < N; ++i, --j)
           reversed[j] = ordered[i];
      return reversed;
 };


 // test the function
 int main()
 {
      unsigned long num; 
      const size_t N = sizeof(num)*8;

      std::cin >> num;
      std::cout << std::showbase << std::hex;
      std::cout << "ordered  = " << num << std::endl;
      std::cout << "reversed = " << reverse<N>(num).to_ulong()  << std::endl;
      std::cout << "double_reversed = " << reverse<N>(reverse<N>(num)).to_ulong() << std::endl;  
 }