实现以下目标最有效的算法是什么:
0010 0000 => 0000 0100
从MSB->LSB转换为LSB->MSB。所有位都必须反转;也就是说,这不是字节交换。
实现以下目标最有效的算法是什么:
0010 0000 => 0000 0100
从MSB->LSB转换为LSB->MSB。所有位都必须反转;也就是说,这不是字节交换。
当前回答
当然,玩弄比特的黑客的明显来源是: http://graphics.stanford.edu/~seander/bithacks.html#BitReverseObvious
其他回答
unsigned char ReverseBits(unsigned char data)
{
unsigned char k = 0, rev = 0;
unsigned char n = data;
while(n)
{
k = n & (~(n - 1));
n &= (n - 1);
rev |= (128 / k);
}
return rev;
}
当然,玩弄比特的黑客的明显来源是: http://graphics.stanford.edu/~seander/bithacks.html#BitReverseObvious
这不是人类能做的工作!... 但非常适合做机器
这是2015年,距离第一次提出这个问题已经过去了6年。编译器从此成为我们的主人,而我们作为人类的工作只是帮助它们。那么,把我们的意图传达给机器的最佳方式是什么呢?
位反转是如此普遍,以至于你不得不怀疑为什么x86不断增长的ISA没有包含一次性完成它的指令。
原因是:如果你给编译器一个真正简洁的意图,位反转应该只需要大约20个CPU周期。让我向你展示如何制作reverse()并使用它:
#include <inttypes.h>
#include <stdio.h>
uint64_t reverse(const uint64_t n,
const uint64_t k)
{
uint64_t r, i;
for (r = 0, i = 0; i < k; ++i)
r |= ((n >> i) & 1) << (k - i - 1);
return r;
}
int main()
{
const uint64_t size = 64;
uint64_t sum = 0;
uint64_t a;
for (a = 0; a < (uint64_t)1 << 30; ++a)
sum += reverse(a, size);
printf("%" PRIu64 "\n", sum);
return 0;
}
使用Clang版本>= 3.6,-O3, -march=native(用Haswell测试)编译这个示例程序,使用新的AVX2指令提供美术质量代码,运行时为11秒处理~ 10亿reverse()秒。这是~10 ns每反向(),0.5 ns CPU周期假设2 GHz,我们将达到甜蜜的20个CPU周期。
对于单个大数组,您可以在访问RAM一次所需的时间内放入10个reverse() ! 你可以在访问L2缓存LUT两次的时间里放入1个reverse()。
注意:这个示例代码应该可以作为一个不错的基准运行几年,但是一旦编译器足够聪明,可以优化main()只输出最终结果,而不是真正计算任何东西,它最终就会开始显得过时了。但目前它只用于展示reverse()。
这是32位,如果我们考虑8位,我们需要改变大小。
void bitReverse(int num)
{
int num_reverse = 0;
int size = (sizeof(int)*8) -1;
int i=0,j=0;
for(i=0,j=size;i<=size,j>=0;i++,j--)
{
if((num >> i)&1)
{
num_reverse = (num_reverse | (1<<j));
}
}
printf("\n rev num = %d\n",num_reverse);
}
按LSB->MSB顺序读取输入整数“num”,并按MSB->LSB顺序存储在num_reverse中。
Anders Cedronius的答案为那些拥有支持AVX2的x86 CPU的人提供了一个很好的解决方案。对于没有AVX支持的x86平台或非x86平台,以下任何一种实现都应该工作良好。
第一个代码是经典二进制分区方法的一个变体,编码的目的是最大限度地利用shift-plus-logic习惯用法,这种习惯用法在各种ARM处理器上都很有用。此外,它使用动态掩码生成,这对于需要多个指令来加载每个32位掩码值的RISC处理器是有益的。x86平台的编译器应该在编译时而不是运行时使用常量传播来计算所有掩码。
/* Classic binary partitioning algorithm */
inline uint32_t brev_classic (uint32_t a)
{
uint32_t m;
a = (a >> 16) | (a << 16); // swap halfwords
m = 0x00ff00ff; a = ((a >> 8) & m) | ((a << 8) & ~m); // swap bytes
m = m^(m << 4); a = ((a >> 4) & m) | ((a << 4) & ~m); // swap nibbles
m = m^(m << 2); a = ((a >> 2) & m) | ((a << 2) & ~m);
m = m^(m << 1); a = ((a >> 1) & m) | ((a << 1) & ~m);
return a;
}
在“计算机编程艺术”的第4A卷中,D. Knuth展示了反转位的聪明方法,这比经典的二进制分区算法所需的操作少得令人惊讶。一个这样的32位操作数算法,我在TAOCP中找不到,在Hacker’s Delight网站上的这个文档中显示。
/* Knuth's algorithm from http://www.hackersdelight.org/revisions.pdf. Retrieved 8/19/2015 */
inline uint32_t brev_knuth (uint32_t a)
{
uint32_t t;
a = (a << 15) | (a >> 17);
t = (a ^ (a >> 10)) & 0x003f801f;
a = (t + (t << 10)) ^ a;
t = (a ^ (a >> 4)) & 0x0e038421;
a = (t + (t << 4)) ^ a;
t = (a ^ (a >> 2)) & 0x22488842;
a = (t + (t << 2)) ^ a;
return a;
}
使用Intel编译器C/ c++编译器13.1.3.198,上述两个函数都能很好地自动向量化XMM寄存器。它们也可以手动向量化,而不需要很多努力。
在我的IvyBridge Xeon E3 1270v2上,使用自动向量化代码,1亿uint32_t字在0.070秒内使用brev_classic()位反转,0.068秒使用brev_knuth()位反转。我注意确保我的基准测试不受系统内存带宽的限制。