实现以下目标最有效的算法是什么:

0010 0000 => 0000 0100

从MSB->LSB转换为LSB->MSB。所有位都必须反转;也就是说,这不是字节交换。


当前回答

对于喜欢递归的人来说,这是另一个解决方案。

这个想法很简单。 将输入除以一半并交换两部分,继续直到达到单个位。

Illustrated in the example below.

Ex : If Input is 00101010   ==> Expected output is 01010100

1. Divide the input into 2 halves 
    0010 --- 1010

2. Swap the 2 Halves
    1010     0010

3. Repeat the same for each half.
    10 -- 10 ---  00 -- 10
    10    10      10    00

    1-0 -- 1-0 --- 1-0 -- 0-0
    0 1    0 1     0 1    0 0

Done! Output is 01010100

这里有一个递归函数来求解。(注意,我使用了unsigned int,所以它可以用于sizeof(unsigned int)*8位的输入。

递归函数有两个参数-需要位的值 要反转的值和值中的比特数。

int reverse_bits_recursive(unsigned int num, unsigned int numBits)
{
    unsigned int reversedNum;;
    unsigned int mask = 0;

    mask = (0x1 << (numBits/2)) - 1;

    if (numBits == 1) return num;
    reversedNum = reverse_bits_recursive(num >> numBits/2, numBits/2) |
                   reverse_bits_recursive((num & mask), numBits/2) << numBits/2;
    return reversedNum;
}

int main()
{
    unsigned int reversedNum;
    unsigned int num;

    num = 0x55;
    reversedNum = reverse_bits_recursive(num, 8);
    printf ("Bit Reversal Input = 0x%x Output = 0x%x\n", num, reversedNum);

    num = 0xabcd;
    reversedNum = reverse_bits_recursive(num, 16);
    printf ("Bit Reversal Input = 0x%x Output = 0x%x\n", num, reversedNum);

    num = 0x123456;
    reversedNum = reverse_bits_recursive(num, 24);
    printf ("Bit Reversal Input = 0x%x Output = 0x%x\n", num, reversedNum);

    num = 0x11223344;
    reversedNum = reverse_bits_recursive(num,32);
    printf ("Bit Reversal Input = 0x%x Output = 0x%x\n", num, reversedNum);
}

输出如下:

Bit Reversal Input = 0x55 Output = 0xaa
Bit Reversal Input = 0xabcd Output = 0xb3d5
Bit Reversal Input = 0x123456 Output = 0x651690
Bit Reversal Input = 0x11223344 Output = 0x22cc4488

其他回答

这不是人类能做的工作!... 但非常适合做机器

这是2015年,距离第一次提出这个问题已经过去了6年。编译器从此成为我们的主人,而我们作为人类的工作只是帮助它们。那么,把我们的意图传达给机器的最佳方式是什么呢?

位反转是如此普遍,以至于你不得不怀疑为什么x86不断增长的ISA没有包含一次性完成它的指令。

原因是:如果你给编译器一个真正简洁的意图,位反转应该只需要大约20个CPU周期。让我向你展示如何制作reverse()并使用它:

#include <inttypes.h>
#include <stdio.h>

uint64_t reverse(const uint64_t n,
                 const uint64_t k)
{
        uint64_t r, i;
        for (r = 0, i = 0; i < k; ++i)
                r |= ((n >> i) & 1) << (k - i - 1);
        return r;
}

int main()
{
        const uint64_t size = 64;
        uint64_t sum = 0;
        uint64_t a;
        for (a = 0; a < (uint64_t)1 << 30; ++a)
                sum += reverse(a, size);
        printf("%" PRIu64 "\n", sum);
        return 0;
}

使用Clang版本>= 3.6,-O3, -march=native(用Haswell测试)编译这个示例程序,使用新的AVX2指令提供美术质量代码,运行时为11秒处理~ 10亿reverse()秒。这是~10 ns每反向(),0.5 ns CPU周期假设2 GHz,我们将达到甜蜜的20个CPU周期。

对于单个大数组,您可以在访问RAM一次所需的时间内放入10个reverse() ! 你可以在访问L2缓存LUT两次的时间里放入1个reverse()。

注意:这个示例代码应该可以作为一个不错的基准运行几年,但是一旦编译器足够聪明,可以优化main()只输出最终结果,而不是真正计算任何东西,它最终就会开始显得过时了。但目前它只用于展示reverse()。

我的简单解决方案

BitReverse(IN)
    OUT = 0x00;
    R = 1;      // Right mask   ...0000.0001
    L = 0;      // Left mask    1000.0000...
    L = ~0; 
    L = ~(i >> 1);
    int size = sizeof(IN) * 4;  // bit size

    while(size--){
        if(IN & L) OUT = OUT | R; // start from MSB  1000.xxxx
        if(IN & R) OUT = OUT | L; // start from LSB  xxxx.0001
        L = L >> 1;
        R = R << 1; 
    }
    return OUT;

通用的

C代码。以1字节输入数据num为例。

    unsigned char num = 0xaa;   // 1010 1010 (aa) -> 0101 0101 (55)
    int s = sizeof(num) * 8;    // get number of bits
    int i, x, y, p;
    int var = 0;                // make var data type to be equal or larger than num

    for (i = 0; i < (s / 2); i++) {
        // extract bit on the left, from MSB
        p = s - i - 1;
        x = num & (1 << p);
        x = x >> p;
        printf("x: %d\n", x);

        // extract bit on the right, from LSB
        y = num & (1 << i);
        y = y >> i;
        printf("y: %d\n", y);

        var = var | (x << i);       // apply x
        var = var | (y << p);       // apply y
    }

    printf("new: 0x%x\n", new);

实现低内存和最快。

private Byte  BitReverse(Byte bData)
    {
        Byte[] lookup = { 0, 8,  4, 12, 
                          2, 10, 6, 14 , 
                          1, 9,  5, 13,
                          3, 11, 7, 15 };
        Byte ret_val = (Byte)(((lookup[(bData & 0x0F)]) << 4) + lookup[((bData & 0xF0) >> 4)]);
        return ret_val;
    }

我很好奇原始旋转有多快。 在我的机器(i7@2600)上,1,500,150,000次迭代的平均值为27.28 ns(在131,071个64位整数的随机集上)。

优点:占用内存少,代码简单。我想说它也没有那么大。对于任何输入(128个算术SHIFT运算+ 64个逻辑and运算+ 64个逻辑OR运算),所需的时间都是可预测的常量。

我比较了@Matt J获得的最佳时间,他有公认的答案。如果我没有看错他的答案,他得到的最好结果是0.631739秒,100万次迭代,这导致平均每次旋转631 ns。

我使用的代码片段如下:

unsigned long long reverse_long(unsigned long long x)
{
    return (((x >> 0) & 1) << 63) |
           (((x >> 1) & 1) << 62) |
           (((x >> 2) & 1) << 61) |
           (((x >> 3) & 1) << 60) |
           (((x >> 4) & 1) << 59) |
           (((x >> 5) & 1) << 58) |
           (((x >> 6) & 1) << 57) |
           (((x >> 7) & 1) << 56) |
           (((x >> 8) & 1) << 55) |
           (((x >> 9) & 1) << 54) |
           (((x >> 10) & 1) << 53) |
           (((x >> 11) & 1) << 52) |
           (((x >> 12) & 1) << 51) |
           (((x >> 13) & 1) << 50) |
           (((x >> 14) & 1) << 49) |
           (((x >> 15) & 1) << 48) |
           (((x >> 16) & 1) << 47) |
           (((x >> 17) & 1) << 46) |
           (((x >> 18) & 1) << 45) |
           (((x >> 19) & 1) << 44) |
           (((x >> 20) & 1) << 43) |
           (((x >> 21) & 1) << 42) |
           (((x >> 22) & 1) << 41) |
           (((x >> 23) & 1) << 40) |
           (((x >> 24) & 1) << 39) |
           (((x >> 25) & 1) << 38) |
           (((x >> 26) & 1) << 37) |
           (((x >> 27) & 1) << 36) |
           (((x >> 28) & 1) << 35) |
           (((x >> 29) & 1) << 34) |
           (((x >> 30) & 1) << 33) |
           (((x >> 31) & 1) << 32) |
           (((x >> 32) & 1) << 31) |
           (((x >> 33) & 1) << 30) |
           (((x >> 34) & 1) << 29) |
           (((x >> 35) & 1) << 28) |
           (((x >> 36) & 1) << 27) |
           (((x >> 37) & 1) << 26) |
           (((x >> 38) & 1) << 25) |
           (((x >> 39) & 1) << 24) |
           (((x >> 40) & 1) << 23) |
           (((x >> 41) & 1) << 22) |
           (((x >> 42) & 1) << 21) |
           (((x >> 43) & 1) << 20) |
           (((x >> 44) & 1) << 19) |
           (((x >> 45) & 1) << 18) |
           (((x >> 46) & 1) << 17) |
           (((x >> 47) & 1) << 16) |
           (((x >> 48) & 1) << 15) |
           (((x >> 49) & 1) << 14) |
           (((x >> 50) & 1) << 13) |
           (((x >> 51) & 1) << 12) |
           (((x >> 52) & 1) << 11) |
           (((x >> 53) & 1) << 10) |
           (((x >> 54) & 1) << 9) |
           (((x >> 55) & 1) << 8) |
           (((x >> 56) & 1) << 7) |
           (((x >> 57) & 1) << 6) |
           (((x >> 58) & 1) << 5) |
           (((x >> 59) & 1) << 4) |
           (((x >> 60) & 1) << 3) |
           (((x >> 61) & 1) << 2) |
           (((x >> 62) & 1) << 1) |
           (((x >> 63) & 1) << 0);
}