实现以下目标最有效的算法是什么:
0010 0000 => 0000 0100
从MSB->LSB转换为LSB->MSB。所有位都必须反转;也就是说,这不是字节交换。
实现以下目标最有效的算法是什么:
0010 0000 => 0000 0100
从MSB->LSB转换为LSB->MSB。所有位都必须反转;也就是说,这不是字节交换。
当前回答
对于喜欢递归的人来说,这是另一个解决方案。
这个想法很简单。 将输入除以一半并交换两部分,继续直到达到单个位。
Illustrated in the example below.
Ex : If Input is 00101010 ==> Expected output is 01010100
1. Divide the input into 2 halves
0010 --- 1010
2. Swap the 2 Halves
1010 0010
3. Repeat the same for each half.
10 -- 10 --- 00 -- 10
10 10 10 00
1-0 -- 1-0 --- 1-0 -- 0-0
0 1 0 1 0 1 0 0
Done! Output is 01010100
这里有一个递归函数来求解。(注意,我使用了unsigned int,所以它可以用于sizeof(unsigned int)*8位的输入。
递归函数有两个参数-需要位的值 要反转的值和值中的比特数。
int reverse_bits_recursive(unsigned int num, unsigned int numBits)
{
unsigned int reversedNum;;
unsigned int mask = 0;
mask = (0x1 << (numBits/2)) - 1;
if (numBits == 1) return num;
reversedNum = reverse_bits_recursive(num >> numBits/2, numBits/2) |
reverse_bits_recursive((num & mask), numBits/2) << numBits/2;
return reversedNum;
}
int main()
{
unsigned int reversedNum;
unsigned int num;
num = 0x55;
reversedNum = reverse_bits_recursive(num, 8);
printf ("Bit Reversal Input = 0x%x Output = 0x%x\n", num, reversedNum);
num = 0xabcd;
reversedNum = reverse_bits_recursive(num, 16);
printf ("Bit Reversal Input = 0x%x Output = 0x%x\n", num, reversedNum);
num = 0x123456;
reversedNum = reverse_bits_recursive(num, 24);
printf ("Bit Reversal Input = 0x%x Output = 0x%x\n", num, reversedNum);
num = 0x11223344;
reversedNum = reverse_bits_recursive(num,32);
printf ("Bit Reversal Input = 0x%x Output = 0x%x\n", num, reversedNum);
}
输出如下:
Bit Reversal Input = 0x55 Output = 0xaa
Bit Reversal Input = 0xabcd Output = 0xb3d5
Bit Reversal Input = 0x123456 Output = 0x651690
Bit Reversal Input = 0x11223344 Output = 0x22cc4488
其他回答
好吧,这基本上与第一个“reverse()”相同,但它是64位的,只需要从指令流中加载一个即时掩码。GCC创建的代码没有跳转,所以这应该是相当快的。
#include <stdio.h>
static unsigned long long swap64(unsigned long long val)
{
#define ZZZZ(x,s,m) (((x) >>(s)) & (m)) | (((x) & (m))<<(s));
/* val = (((val) >>16) & 0xFFFF0000FFFF) | (((val) & 0xFFFF0000FFFF)<<16); */
val = ZZZZ(val,32, 0x00000000FFFFFFFFull );
val = ZZZZ(val,16, 0x0000FFFF0000FFFFull );
val = ZZZZ(val,8, 0x00FF00FF00FF00FFull );
val = ZZZZ(val,4, 0x0F0F0F0F0F0F0F0Full );
val = ZZZZ(val,2, 0x3333333333333333ull );
val = ZZZZ(val,1, 0x5555555555555555ull );
return val;
#undef ZZZZ
}
int main(void)
{
unsigned long long val, aaaa[16] =
{ 0xfedcba9876543210,0xedcba9876543210f,0xdcba9876543210fe,0xcba9876543210fed
, 0xba9876543210fedc,0xa9876543210fedcb,0x9876543210fedcba,0x876543210fedcba9
, 0x76543210fedcba98,0x6543210fedcba987,0x543210fedcba9876,0x43210fedcba98765
, 0x3210fedcba987654,0x210fedcba9876543,0x10fedcba98765432,0x0fedcba987654321
};
unsigned iii;
for (iii=0; iii < 16; iii++) {
val = swap64 (aaaa[iii]);
printf("A[]=%016llX Sw=%016llx\n", aaaa[iii], val);
}
return 0;
}
// Purpose: to reverse bits in an unsigned short integer
// Input: an unsigned short integer whose bits are to be reversed
// Output: an unsigned short integer with the reversed bits of the input one
unsigned short ReverseBits( unsigned short a )
{
// declare and initialize number of bits in the unsigned short integer
const char num_bits = sizeof(a) * CHAR_BIT;
// declare and initialize bitset representation of integer a
bitset<num_bits> bitset_a(a);
// declare and initialize bitset representation of integer b (0000000000000000)
bitset<num_bits> bitset_b(0);
// declare and initialize bitset representation of mask (0000000000000001)
bitset<num_bits> mask(1);
for ( char i = 0; i < num_bits; ++i )
{
bitset_b = (bitset_b << 1) | bitset_a & mask;
bitset_a >>= 1;
}
return (unsigned short) bitset_b.to_ulong();
}
void PrintBits( unsigned short a )
{
// declare and initialize bitset representation of a
bitset<sizeof(a) * CHAR_BIT> bitset(a);
// print out bits
cout << bitset << endl;
}
// Testing the functionality of the code
int main ()
{
unsigned short a = 17, b;
cout << "Original: ";
PrintBits(a);
b = ReverseBits( a );
cout << "Reversed: ";
PrintBits(b);
}
// Output:
Original: 0000000000010001
Reversed: 1000100000000000
注意:下面所有的算法都是用C语言编写的,但是应该可以移植到你所选择的语言中(当它们没有那么快的时候不要看着我:)
选项
低内存(32位int, 32位机器)(从这里):
unsigned int
reverse(register unsigned int x)
{
x = (((x & 0xaaaaaaaa) >> 1) | ((x & 0x55555555) << 1));
x = (((x & 0xcccccccc) >> 2) | ((x & 0x33333333) << 2));
x = (((x & 0xf0f0f0f0) >> 4) | ((x & 0x0f0f0f0f) << 4));
x = (((x & 0xff00ff00) >> 8) | ((x & 0x00ff00ff) << 8));
return((x >> 16) | (x << 16));
}
来自著名的Bit Twiddling Hacks页面:
最快(查找表):
static const unsigned char BitReverseTable256[] =
{
0x00, 0x80, 0x40, 0xC0, 0x20, 0xA0, 0x60, 0xE0, 0x10, 0x90, 0x50, 0xD0, 0x30, 0xB0, 0x70, 0xF0,
0x08, 0x88, 0x48, 0xC8, 0x28, 0xA8, 0x68, 0xE8, 0x18, 0x98, 0x58, 0xD8, 0x38, 0xB8, 0x78, 0xF8,
0x04, 0x84, 0x44, 0xC4, 0x24, 0xA4, 0x64, 0xE4, 0x14, 0x94, 0x54, 0xD4, 0x34, 0xB4, 0x74, 0xF4,
0x0C, 0x8C, 0x4C, 0xCC, 0x2C, 0xAC, 0x6C, 0xEC, 0x1C, 0x9C, 0x5C, 0xDC, 0x3C, 0xBC, 0x7C, 0xFC,
0x02, 0x82, 0x42, 0xC2, 0x22, 0xA2, 0x62, 0xE2, 0x12, 0x92, 0x52, 0xD2, 0x32, 0xB2, 0x72, 0xF2,
0x0A, 0x8A, 0x4A, 0xCA, 0x2A, 0xAA, 0x6A, 0xEA, 0x1A, 0x9A, 0x5A, 0xDA, 0x3A, 0xBA, 0x7A, 0xFA,
0x06, 0x86, 0x46, 0xC6, 0x26, 0xA6, 0x66, 0xE6, 0x16, 0x96, 0x56, 0xD6, 0x36, 0xB6, 0x76, 0xF6,
0x0E, 0x8E, 0x4E, 0xCE, 0x2E, 0xAE, 0x6E, 0xEE, 0x1E, 0x9E, 0x5E, 0xDE, 0x3E, 0xBE, 0x7E, 0xFE,
0x01, 0x81, 0x41, 0xC1, 0x21, 0xA1, 0x61, 0xE1, 0x11, 0x91, 0x51, 0xD1, 0x31, 0xB1, 0x71, 0xF1,
0x09, 0x89, 0x49, 0xC9, 0x29, 0xA9, 0x69, 0xE9, 0x19, 0x99, 0x59, 0xD9, 0x39, 0xB9, 0x79, 0xF9,
0x05, 0x85, 0x45, 0xC5, 0x25, 0xA5, 0x65, 0xE5, 0x15, 0x95, 0x55, 0xD5, 0x35, 0xB5, 0x75, 0xF5,
0x0D, 0x8D, 0x4D, 0xCD, 0x2D, 0xAD, 0x6D, 0xED, 0x1D, 0x9D, 0x5D, 0xDD, 0x3D, 0xBD, 0x7D, 0xFD,
0x03, 0x83, 0x43, 0xC3, 0x23, 0xA3, 0x63, 0xE3, 0x13, 0x93, 0x53, 0xD3, 0x33, 0xB3, 0x73, 0xF3,
0x0B, 0x8B, 0x4B, 0xCB, 0x2B, 0xAB, 0x6B, 0xEB, 0x1B, 0x9B, 0x5B, 0xDB, 0x3B, 0xBB, 0x7B, 0xFB,
0x07, 0x87, 0x47, 0xC7, 0x27, 0xA7, 0x67, 0xE7, 0x17, 0x97, 0x57, 0xD7, 0x37, 0xB7, 0x77, 0xF7,
0x0F, 0x8F, 0x4F, 0xCF, 0x2F, 0xAF, 0x6F, 0xEF, 0x1F, 0x9F, 0x5F, 0xDF, 0x3F, 0xBF, 0x7F, 0xFF
};
unsigned int v; // reverse 32-bit value, 8 bits at time
unsigned int c; // c will get v reversed
// Option 1:
c = (BitReverseTable256[v & 0xff] << 24) |
(BitReverseTable256[(v >> 8) & 0xff] << 16) |
(BitReverseTable256[(v >> 16) & 0xff] << 8) |
(BitReverseTable256[(v >> 24) & 0xff]);
// Option 2:
unsigned char * p = (unsigned char *) &v;
unsigned char * q = (unsigned char *) &c;
q[3] = BitReverseTable256[p[0]];
q[2] = BitReverseTable256[p[1]];
q[1] = BitReverseTable256[p[2]];
q[0] = BitReverseTable256[p[3]];
您可以将此想法扩展到64位整数,或者为了速度而牺牲内存(假设L1数据缓存足够大),并使用一个64k条目查找表一次反向16位。
其他人
简单的
unsigned int v; // input bits to be reversed
unsigned int r = v & 1; // r will be reversed bits of v; first get LSB of v
int s = sizeof(v) * CHAR_BIT - 1; // extra shift needed at end
for (v >>= 1; v; v >>= 1)
{
r <<= 1;
r |= v & 1;
s--;
}
r <<= s; // shift when v's highest bits are zero
更快(32位处理器)
unsigned char b = x;
b = ((b * 0x0802LU & 0x22110LU) | (b * 0x8020LU & 0x88440LU)) * 0x10101LU >> 16;
更快(64位处理器)
unsigned char b; // reverse this (8-bit) byte
b = (b * 0x0202020202ULL & 0x010884422010ULL) % 1023;
如果您想在32位整型上执行此操作,只需反转每个字节中的位,并反转字节的顺序。那就是:
unsigned int toReverse;
unsigned int reversed;
unsigned char inByte0 = (toReverse & 0xFF);
unsigned char inByte1 = (toReverse & 0xFF00) >> 8;
unsigned char inByte2 = (toReverse & 0xFF0000) >> 16;
unsigned char inByte3 = (toReverse & 0xFF000000) >> 24;
reversed = (reverseBits(inByte0) << 24) | (reverseBits(inByte1) << 16) | (reverseBits(inByte2) << 8) | (reverseBits(inByte3);
结果
我对两种最有希望的解决方案进行了基准测试,查找表和按位and(第一个)。测试机器是一台带有4GB DDR2-800和酷睿2 Duo T7500 @ 2.4GHz, 4MB L2缓存的笔记本电脑;YMMV。我在64位Linux上使用gcc 4.3.2。OpenMP(和GCC绑定)用于高分辨率计时器。
reverse.c
#include <stdlib.h>
#include <stdio.h>
#include <omp.h>
unsigned int
reverse(register unsigned int x)
{
x = (((x & 0xaaaaaaaa) >> 1) | ((x & 0x55555555) << 1));
x = (((x & 0xcccccccc) >> 2) | ((x & 0x33333333) << 2));
x = (((x & 0xf0f0f0f0) >> 4) | ((x & 0x0f0f0f0f) << 4));
x = (((x & 0xff00ff00) >> 8) | ((x & 0x00ff00ff) << 8));
return((x >> 16) | (x << 16));
}
int main()
{
unsigned int *ints = malloc(100000000*sizeof(unsigned int));
unsigned int *ints2 = malloc(100000000*sizeof(unsigned int));
for(unsigned int i = 0; i < 100000000; i++)
ints[i] = rand();
unsigned int *inptr = ints;
unsigned int *outptr = ints2;
unsigned int *endptr = ints + 100000000;
// Starting the time measurement
double start = omp_get_wtime();
// Computations to be measured
while(inptr != endptr)
{
(*outptr) = reverse(*inptr);
inptr++;
outptr++;
}
// Measuring the elapsed time
double end = omp_get_wtime();
// Time calculation (in seconds)
printf("Time: %f seconds\n", end-start);
free(ints);
free(ints2);
return 0;
}
reverse_lookup.c
#include <stdlib.h>
#include <stdio.h>
#include <omp.h>
static const unsigned char BitReverseTable256[] =
{
0x00, 0x80, 0x40, 0xC0, 0x20, 0xA0, 0x60, 0xE0, 0x10, 0x90, 0x50, 0xD0, 0x30, 0xB0, 0x70, 0xF0,
0x08, 0x88, 0x48, 0xC8, 0x28, 0xA8, 0x68, 0xE8, 0x18, 0x98, 0x58, 0xD8, 0x38, 0xB8, 0x78, 0xF8,
0x04, 0x84, 0x44, 0xC4, 0x24, 0xA4, 0x64, 0xE4, 0x14, 0x94, 0x54, 0xD4, 0x34, 0xB4, 0x74, 0xF4,
0x0C, 0x8C, 0x4C, 0xCC, 0x2C, 0xAC, 0x6C, 0xEC, 0x1C, 0x9C, 0x5C, 0xDC, 0x3C, 0xBC, 0x7C, 0xFC,
0x02, 0x82, 0x42, 0xC2, 0x22, 0xA2, 0x62, 0xE2, 0x12, 0x92, 0x52, 0xD2, 0x32, 0xB2, 0x72, 0xF2,
0x0A, 0x8A, 0x4A, 0xCA, 0x2A, 0xAA, 0x6A, 0xEA, 0x1A, 0x9A, 0x5A, 0xDA, 0x3A, 0xBA, 0x7A, 0xFA,
0x06, 0x86, 0x46, 0xC6, 0x26, 0xA6, 0x66, 0xE6, 0x16, 0x96, 0x56, 0xD6, 0x36, 0xB6, 0x76, 0xF6,
0x0E, 0x8E, 0x4E, 0xCE, 0x2E, 0xAE, 0x6E, 0xEE, 0x1E, 0x9E, 0x5E, 0xDE, 0x3E, 0xBE, 0x7E, 0xFE,
0x01, 0x81, 0x41, 0xC1, 0x21, 0xA1, 0x61, 0xE1, 0x11, 0x91, 0x51, 0xD1, 0x31, 0xB1, 0x71, 0xF1,
0x09, 0x89, 0x49, 0xC9, 0x29, 0xA9, 0x69, 0xE9, 0x19, 0x99, 0x59, 0xD9, 0x39, 0xB9, 0x79, 0xF9,
0x05, 0x85, 0x45, 0xC5, 0x25, 0xA5, 0x65, 0xE5, 0x15, 0x95, 0x55, 0xD5, 0x35, 0xB5, 0x75, 0xF5,
0x0D, 0x8D, 0x4D, 0xCD, 0x2D, 0xAD, 0x6D, 0xED, 0x1D, 0x9D, 0x5D, 0xDD, 0x3D, 0xBD, 0x7D, 0xFD,
0x03, 0x83, 0x43, 0xC3, 0x23, 0xA3, 0x63, 0xE3, 0x13, 0x93, 0x53, 0xD3, 0x33, 0xB3, 0x73, 0xF3,
0x0B, 0x8B, 0x4B, 0xCB, 0x2B, 0xAB, 0x6B, 0xEB, 0x1B, 0x9B, 0x5B, 0xDB, 0x3B, 0xBB, 0x7B, 0xFB,
0x07, 0x87, 0x47, 0xC7, 0x27, 0xA7, 0x67, 0xE7, 0x17, 0x97, 0x57, 0xD7, 0x37, 0xB7, 0x77, 0xF7,
0x0F, 0x8F, 0x4F, 0xCF, 0x2F, 0xAF, 0x6F, 0xEF, 0x1F, 0x9F, 0x5F, 0xDF, 0x3F, 0xBF, 0x7F, 0xFF
};
int main()
{
unsigned int *ints = malloc(100000000*sizeof(unsigned int));
unsigned int *ints2 = malloc(100000000*sizeof(unsigned int));
for(unsigned int i = 0; i < 100000000; i++)
ints[i] = rand();
unsigned int *inptr = ints;
unsigned int *outptr = ints2;
unsigned int *endptr = ints + 100000000;
// Starting the time measurement
double start = omp_get_wtime();
// Computations to be measured
while(inptr != endptr)
{
unsigned int in = *inptr;
// Option 1:
//*outptr = (BitReverseTable256[in & 0xff] << 24) |
// (BitReverseTable256[(in >> 8) & 0xff] << 16) |
// (BitReverseTable256[(in >> 16) & 0xff] << 8) |
// (BitReverseTable256[(in >> 24) & 0xff]);
// Option 2:
unsigned char * p = (unsigned char *) &(*inptr);
unsigned char * q = (unsigned char *) &(*outptr);
q[3] = BitReverseTable256[p[0]];
q[2] = BitReverseTable256[p[1]];
q[1] = BitReverseTable256[p[2]];
q[0] = BitReverseTable256[p[3]];
inptr++;
outptr++;
}
// Measuring the elapsed time
double end = omp_get_wtime();
// Time calculation (in seconds)
printf("Time: %f seconds\n", end-start);
free(ints);
free(ints2);
return 0;
}
我在几个不同的优化中尝试了这两种方法,在每个级别上进行了3次试验,每次试验逆转了1亿个随机无符号整数。对于查找表选项,我尝试了按位hacks页面上给出的两种方案(选项1和2)。结果如下所示。
位和
mrj10@mjlap:~/code$ gcc -fopenmp -std=c99 -o reverse reverse.c
mrj10@mjlap:~/code$ ./reverse
Time: 2.000593 seconds
mrj10@mjlap:~/code$ ./reverse
Time: 1.938893 seconds
mrj10@mjlap:~/code$ ./reverse
Time: 1.936365 seconds
mrj10@mjlap:~/code$ gcc -fopenmp -std=c99 -O2 -o reverse reverse.c
mrj10@mjlap:~/code$ ./reverse
Time: 0.942709 seconds
mrj10@mjlap:~/code$ ./reverse
Time: 0.991104 seconds
mrj10@mjlap:~/code$ ./reverse
Time: 0.947203 seconds
mrj10@mjlap:~/code$ gcc -fopenmp -std=c99 -O3 -o reverse reverse.c
mrj10@mjlap:~/code$ ./reverse
Time: 0.922639 seconds
mrj10@mjlap:~/code$ ./reverse
Time: 0.892372 seconds
mrj10@mjlap:~/code$ ./reverse
Time: 0.891688 seconds
查阅表(选项1)
mrj10@mjlap:~/code$ gcc -fopenmp -std=c99 -o reverse_lookup reverse_lookup.c
mrj10@mjlap:~/code$ ./reverse_lookup
Time: 1.201127 seconds
mrj10@mjlap:~/code$ ./reverse_lookup
Time: 1.196129 seconds
mrj10@mjlap:~/code$ ./reverse_lookup
Time: 1.235972 seconds
mrj10@mjlap:~/code$ gcc -fopenmp -std=c99 -O2 -o reverse_lookup reverse_lookup.c
mrj10@mjlap:~/code$ ./reverse_lookup
Time: 0.633042 seconds
mrj10@mjlap:~/code$ ./reverse_lookup
Time: 0.655880 seconds
mrj10@mjlap:~/code$ ./reverse_lookup
Time: 0.633390 seconds
mrj10@mjlap:~/code$ gcc -fopenmp -std=c99 -O3 -o reverse_lookup reverse_lookup.c
mrj10@mjlap:~/code$ ./reverse_lookup
Time: 0.652322 seconds
mrj10@mjlap:~/code$ ./reverse_lookup
Time: 0.631739 seconds
mrj10@mjlap:~/code$ ./reverse_lookup
Time: 0.652431 seconds
查找表(选项2)
mrj10@mjlap:~/code$ gcc -fopenmp -std=c99 -o reverse_lookup reverse_lookup.c
mrj10@mjlap:~/code$ ./reverse_lookup
Time: 1.671537 seconds
mrj10@mjlap:~/code$ ./reverse_lookup
Time: 1.688173 seconds
mrj10@mjlap:~/code$ ./reverse_lookup
Time: 1.664662 seconds
mrj10@mjlap:~/code$ gcc -fopenmp -std=c99 -O2 -o reverse_lookup reverse_lookup.c
mrj10@mjlap:~/code$ ./reverse_lookup
Time: 1.049851 seconds
mrj10@mjlap:~/code$ ./reverse_lookup
Time: 1.048403 seconds
mrj10@mjlap:~/code$ ./reverse_lookup
Time: 1.085086 seconds
mrj10@mjlap:~/code$ gcc -fopenmp -std=c99 -O3 -o reverse_lookup reverse_lookup.c
mrj10@mjlap:~/code$ ./reverse_lookup
Time: 1.082223 seconds
mrj10@mjlap:~/code$ ./reverse_lookup
Time: 1.053431 seconds
mrj10@mjlap:~/code$ ./reverse_lookup
Time: 1.081224 seconds
结论
如果您关心性能,请使用选项1(字节寻址速度慢,这是意料中事)的查找表。如果您需要从系统中挤出最后一个字节的内存(如果您关心位反转的性能,您可能会这样做),那么按位- and方法的优化版本也不会太糟糕。
警告
是的,我知道基准代码完全是一种hack。关于如何改进它的建议非常受欢迎。我知道的事情:
I don't have access to ICC. This may be faster (please respond in a comment if you can test this out). A 64K lookup table may do well on some modern microarchitectures with large L1D. -mtune=native didn't work for -O2/-O3 (ld blew up with some crazy symbol redefinition error), so I don't believe the generated code is tuned for my microarchitecture. There may be a way to do this slightly faster with SSE. I have no idea how, but with fast replication, packed bitwise AND, and swizzling instructions, there's got to be something there. I know only enough x86 assembly to be dangerous; here's the code GCC generated on -O3 for option 1, so somebody more knowledgable than myself can check it out:
32位
.L3:
movl (%r12,%rsi), %ecx
movzbl %cl, %eax
movzbl BitReverseTable256(%rax), %edx
movl %ecx, %eax
shrl $24, %eax
mov %eax, %eax
movzbl BitReverseTable256(%rax), %eax
sall $24, %edx
orl %eax, %edx
movzbl %ch, %eax
shrl $16, %ecx
movzbl BitReverseTable256(%rax), %eax
movzbl %cl, %ecx
sall $16, %eax
orl %eax, %edx
movzbl BitReverseTable256(%rcx), %eax
sall $8, %eax
orl %eax, %edx
movl %edx, (%r13,%rsi)
addq $4, %rsi
cmpq $400000000, %rsi
jne .L3
编辑:我还尝试在我的机器上使用uint64_t类型,看看是否有任何性能提升。性能比32位快10%左右,无论您是一次使用64位类型对两个32位整型反转位,还是实际上将64位值的一半反转位,性能都几乎相同。汇编代码如下所示(对于前一种情况,一次为两个32位整型反转位):
.L3:
movq (%r12,%rsi), %rdx
movq %rdx, %rax
shrq $24, %rax
andl $255, %eax
movzbl BitReverseTable256(%rax), %ecx
movzbq %dl,%rax
movzbl BitReverseTable256(%rax), %eax
salq $24, %rax
orq %rax, %rcx
movq %rdx, %rax
shrq $56, %rax
movzbl BitReverseTable256(%rax), %eax
salq $32, %rax
orq %rax, %rcx
movzbl %dh, %eax
shrq $16, %rdx
movzbl BitReverseTable256(%rax), %eax
salq $16, %rax
orq %rax, %rcx
movzbq %dl,%rax
shrq $16, %rdx
movzbl BitReverseTable256(%rax), %eax
salq $8, %rax
orq %rax, %rcx
movzbq %dl,%rax
shrq $8, %rdx
movzbl BitReverseTable256(%rax), %eax
salq $56, %rax
orq %rax, %rcx
movzbq %dl,%rax
shrq $8, %rdx
movzbl BitReverseTable256(%rax), %eax
andl $255, %edx
salq $48, %rax
orq %rax, %rcx
movzbl BitReverseTable256(%rdx), %eax
salq $40, %rax
orq %rax, %rcx
movq %rcx, (%r13,%rsi)
addq $8, %rsi
cmpq $400000000, %rsi
jne .L3
好吧,这肯定不会是一个像Matt J的答案,但希望它仍然有用。
size_t reverse(size_t n, unsigned int bytes)
{
__asm__("BSWAP %0" : "=r"(n) : "0"(n));
n >>= ((sizeof(size_t) - bytes) * 8);
n = ((n & 0xaaaaaaaaaaaaaaaa) >> 1) | ((n & 0x5555555555555555) << 1);
n = ((n & 0xcccccccccccccccc) >> 2) | ((n & 0x3333333333333333) << 2);
n = ((n & 0xf0f0f0f0f0f0f0f0) >> 4) | ((n & 0x0f0f0f0f0f0f0f0f) << 4);
return n;
}
这与Matt的最佳算法完全相同,除了有一个叫做BSWAP的小指令,它交换64位数字的字节(而不是位)。所以b7 b6 b5 b4 b3 b2 b1 b0变成了b0 b1 b2 b3 b4 b5 b6 b7。由于我们处理的是32位数字,所以需要将字节交换后的数字向下移动32位。这只留给我们交换每个字节的8位的任务,这是完成的,瞧!我们做完了。
计时:在我的机器上,Matt的算法每次试验只需0.52秒。我的每次试验大约耗时0.42秒。我认为快20%还不错。
如果你担心指令BSWAP的可用性,维基百科列出了指令BSWAP是与1989年推出的80846一起添加的。值得注意的是,维基百科还指出,这条指令只适用于32位寄存器,这显然不是我的机器上的情况,它只适用于64位寄存器。
此方法同样适用于任何整型数据类型,因此可以通过传递所需的字节数来简单地推广该方法:
size_t reverse(size_t n, unsigned int bytes)
{
__asm__("BSWAP %0" : "=r"(n) : "0"(n));
n >>= ((sizeof(size_t) - bytes) * 8);
n = ((n & 0xaaaaaaaaaaaaaaaa) >> 1) | ((n & 0x5555555555555555) << 1);
n = ((n & 0xcccccccccccccccc) >> 2) | ((n & 0x3333333333333333) << 2);
n = ((n & 0xf0f0f0f0f0f0f0f0) >> 4) | ((n & 0x0f0f0f0f0f0f0f0f) << 4);
return n;
}
它可以被称为:
n = reverse(n, sizeof(char));//only reverse 8 bits
n = reverse(n, sizeof(short));//reverse 16 bits
n = reverse(n, sizeof(int));//reverse 32 bits
n = reverse(n, sizeof(size_t));//reverse 64 bits
编译器应该能够优化掉额外的形参(假设编译器内联了函数),对于sizeof(size_t)情况,右移将被完全删除。注意,如果传递sizeof(char), GCC至少不能删除BSWAP和右移。
我很好奇原始旋转有多快。 在我的机器(i7@2600)上,1,500,150,000次迭代的平均值为27.28 ns(在131,071个64位整数的随机集上)。
优点:占用内存少,代码简单。我想说它也没有那么大。对于任何输入(128个算术SHIFT运算+ 64个逻辑and运算+ 64个逻辑OR运算),所需的时间都是可预测的常量。
我比较了@Matt J获得的最佳时间,他有公认的答案。如果我没有看错他的答案,他得到的最好结果是0.631739秒,100万次迭代,这导致平均每次旋转631 ns。
我使用的代码片段如下:
unsigned long long reverse_long(unsigned long long x)
{
return (((x >> 0) & 1) << 63) |
(((x >> 1) & 1) << 62) |
(((x >> 2) & 1) << 61) |
(((x >> 3) & 1) << 60) |
(((x >> 4) & 1) << 59) |
(((x >> 5) & 1) << 58) |
(((x >> 6) & 1) << 57) |
(((x >> 7) & 1) << 56) |
(((x >> 8) & 1) << 55) |
(((x >> 9) & 1) << 54) |
(((x >> 10) & 1) << 53) |
(((x >> 11) & 1) << 52) |
(((x >> 12) & 1) << 51) |
(((x >> 13) & 1) << 50) |
(((x >> 14) & 1) << 49) |
(((x >> 15) & 1) << 48) |
(((x >> 16) & 1) << 47) |
(((x >> 17) & 1) << 46) |
(((x >> 18) & 1) << 45) |
(((x >> 19) & 1) << 44) |
(((x >> 20) & 1) << 43) |
(((x >> 21) & 1) << 42) |
(((x >> 22) & 1) << 41) |
(((x >> 23) & 1) << 40) |
(((x >> 24) & 1) << 39) |
(((x >> 25) & 1) << 38) |
(((x >> 26) & 1) << 37) |
(((x >> 27) & 1) << 36) |
(((x >> 28) & 1) << 35) |
(((x >> 29) & 1) << 34) |
(((x >> 30) & 1) << 33) |
(((x >> 31) & 1) << 32) |
(((x >> 32) & 1) << 31) |
(((x >> 33) & 1) << 30) |
(((x >> 34) & 1) << 29) |
(((x >> 35) & 1) << 28) |
(((x >> 36) & 1) << 27) |
(((x >> 37) & 1) << 26) |
(((x >> 38) & 1) << 25) |
(((x >> 39) & 1) << 24) |
(((x >> 40) & 1) << 23) |
(((x >> 41) & 1) << 22) |
(((x >> 42) & 1) << 21) |
(((x >> 43) & 1) << 20) |
(((x >> 44) & 1) << 19) |
(((x >> 45) & 1) << 18) |
(((x >> 46) & 1) << 17) |
(((x >> 47) & 1) << 16) |
(((x >> 48) & 1) << 15) |
(((x >> 49) & 1) << 14) |
(((x >> 50) & 1) << 13) |
(((x >> 51) & 1) << 12) |
(((x >> 52) & 1) << 11) |
(((x >> 53) & 1) << 10) |
(((x >> 54) & 1) << 9) |
(((x >> 55) & 1) << 8) |
(((x >> 56) & 1) << 7) |
(((x >> 57) & 1) << 6) |
(((x >> 58) & 1) << 5) |
(((x >> 59) & 1) << 4) |
(((x >> 60) & 1) << 3) |
(((x >> 61) & 1) << 2) |
(((x >> 62) & 1) << 1) |
(((x >> 63) & 1) << 0);
}