实现以下目标最有效的算法是什么:

0010 0000 => 0000 0100

从MSB->LSB转换为LSB->MSB。所有位都必须反转;也就是说,这不是字节交换。


当前回答

对于喜欢递归的人来说,这是另一个解决方案。

这个想法很简单。 将输入除以一半并交换两部分,继续直到达到单个位。

Illustrated in the example below.

Ex : If Input is 00101010   ==> Expected output is 01010100

1. Divide the input into 2 halves 
    0010 --- 1010

2. Swap the 2 Halves
    1010     0010

3. Repeat the same for each half.
    10 -- 10 ---  00 -- 10
    10    10      10    00

    1-0 -- 1-0 --- 1-0 -- 0-0
    0 1    0 1     0 1    0 0

Done! Output is 01010100

这里有一个递归函数来求解。(注意,我使用了unsigned int,所以它可以用于sizeof(unsigned int)*8位的输入。

递归函数有两个参数-需要位的值 要反转的值和值中的比特数。

int reverse_bits_recursive(unsigned int num, unsigned int numBits)
{
    unsigned int reversedNum;;
    unsigned int mask = 0;

    mask = (0x1 << (numBits/2)) - 1;

    if (numBits == 1) return num;
    reversedNum = reverse_bits_recursive(num >> numBits/2, numBits/2) |
                   reverse_bits_recursive((num & mask), numBits/2) << numBits/2;
    return reversedNum;
}

int main()
{
    unsigned int reversedNum;
    unsigned int num;

    num = 0x55;
    reversedNum = reverse_bits_recursive(num, 8);
    printf ("Bit Reversal Input = 0x%x Output = 0x%x\n", num, reversedNum);

    num = 0xabcd;
    reversedNum = reverse_bits_recursive(num, 16);
    printf ("Bit Reversal Input = 0x%x Output = 0x%x\n", num, reversedNum);

    num = 0x123456;
    reversedNum = reverse_bits_recursive(num, 24);
    printf ("Bit Reversal Input = 0x%x Output = 0x%x\n", num, reversedNum);

    num = 0x11223344;
    reversedNum = reverse_bits_recursive(num,32);
    printf ("Bit Reversal Input = 0x%x Output = 0x%x\n", num, reversedNum);
}

输出如下:

Bit Reversal Input = 0x55 Output = 0xaa
Bit Reversal Input = 0xabcd Output = 0xb3d5
Bit Reversal Input = 0x123456 Output = 0x651690
Bit Reversal Input = 0x11223344 Output = 0x22cc4488

其他回答

好吧,这基本上与第一个“reverse()”相同,但它是64位的,只需要从指令流中加载一个即时掩码。GCC创建的代码没有跳转,所以这应该是相当快的。

#include <stdio.h>

static unsigned long long swap64(unsigned long long val)
{
#define ZZZZ(x,s,m) (((x) >>(s)) & (m)) | (((x) & (m))<<(s));
/* val = (((val) >>16) & 0xFFFF0000FFFF) | (((val) & 0xFFFF0000FFFF)<<16); */

val = ZZZZ(val,32,  0x00000000FFFFFFFFull );
val = ZZZZ(val,16,  0x0000FFFF0000FFFFull );
val = ZZZZ(val,8,   0x00FF00FF00FF00FFull );
val = ZZZZ(val,4,   0x0F0F0F0F0F0F0F0Full );
val = ZZZZ(val,2,   0x3333333333333333ull );
val = ZZZZ(val,1,   0x5555555555555555ull );

return val;
#undef ZZZZ
}

int main(void)
{
unsigned long long val, aaaa[16] =
 { 0xfedcba9876543210,0xedcba9876543210f,0xdcba9876543210fe,0xcba9876543210fed
 , 0xba9876543210fedc,0xa9876543210fedcb,0x9876543210fedcba,0x876543210fedcba9
 , 0x76543210fedcba98,0x6543210fedcba987,0x543210fedcba9876,0x43210fedcba98765
 , 0x3210fedcba987654,0x210fedcba9876543,0x10fedcba98765432,0x0fedcba987654321
 };
unsigned iii;

for (iii=0; iii < 16; iii++) {
    val = swap64 (aaaa[iii]);
    printf("A[]=%016llX Sw=%016llx\n", aaaa[iii], val);
    }
return 0;
}
// Purpose: to reverse bits in an unsigned short integer 
// Input: an unsigned short integer whose bits are to be reversed
// Output: an unsigned short integer with the reversed bits of the input one
unsigned short ReverseBits( unsigned short a )
{
     // declare and initialize number of bits in the unsigned short integer
     const char num_bits = sizeof(a) * CHAR_BIT;

     // declare and initialize bitset representation of integer a
     bitset<num_bits> bitset_a(a);          

     // declare and initialize bitset representation of integer b (0000000000000000)
     bitset<num_bits> bitset_b(0);                  

     // declare and initialize bitset representation of mask (0000000000000001)
     bitset<num_bits> mask(1);          

     for ( char i = 0; i < num_bits; ++i )
     {
          bitset_b = (bitset_b << 1) | bitset_a & mask;
          bitset_a >>= 1;
     }

     return (unsigned short) bitset_b.to_ulong();
}

void PrintBits( unsigned short a )
{
     // declare and initialize bitset representation of a
     bitset<sizeof(a) * CHAR_BIT> bitset(a);

     // print out bits
     cout << bitset << endl;
}


// Testing the functionality of the code

int main ()
{
     unsigned short a = 17, b;

     cout << "Original: "; 
     PrintBits(a);

     b = ReverseBits( a );

     cout << "Reversed: ";
     PrintBits(b);
}

// Output:
Original: 0000000000010001
Reversed: 1000100000000000

注意:下面所有的算法都是用C语言编写的,但是应该可以移植到你所选择的语言中(当它们没有那么快的时候不要看着我:)

选项

低内存(32位int, 32位机器)(从这里):

unsigned int
reverse(register unsigned int x)
{
    x = (((x & 0xaaaaaaaa) >> 1) | ((x & 0x55555555) << 1));
    x = (((x & 0xcccccccc) >> 2) | ((x & 0x33333333) << 2));
    x = (((x & 0xf0f0f0f0) >> 4) | ((x & 0x0f0f0f0f) << 4));
    x = (((x & 0xff00ff00) >> 8) | ((x & 0x00ff00ff) << 8));
    return((x >> 16) | (x << 16));

}

来自著名的Bit Twiddling Hacks页面:

最快(查找表):

static const unsigned char BitReverseTable256[] = 
{
  0x00, 0x80, 0x40, 0xC0, 0x20, 0xA0, 0x60, 0xE0, 0x10, 0x90, 0x50, 0xD0, 0x30, 0xB0, 0x70, 0xF0, 
  0x08, 0x88, 0x48, 0xC8, 0x28, 0xA8, 0x68, 0xE8, 0x18, 0x98, 0x58, 0xD8, 0x38, 0xB8, 0x78, 0xF8, 
  0x04, 0x84, 0x44, 0xC4, 0x24, 0xA4, 0x64, 0xE4, 0x14, 0x94, 0x54, 0xD4, 0x34, 0xB4, 0x74, 0xF4, 
  0x0C, 0x8C, 0x4C, 0xCC, 0x2C, 0xAC, 0x6C, 0xEC, 0x1C, 0x9C, 0x5C, 0xDC, 0x3C, 0xBC, 0x7C, 0xFC, 
  0x02, 0x82, 0x42, 0xC2, 0x22, 0xA2, 0x62, 0xE2, 0x12, 0x92, 0x52, 0xD2, 0x32, 0xB2, 0x72, 0xF2, 
  0x0A, 0x8A, 0x4A, 0xCA, 0x2A, 0xAA, 0x6A, 0xEA, 0x1A, 0x9A, 0x5A, 0xDA, 0x3A, 0xBA, 0x7A, 0xFA,
  0x06, 0x86, 0x46, 0xC6, 0x26, 0xA6, 0x66, 0xE6, 0x16, 0x96, 0x56, 0xD6, 0x36, 0xB6, 0x76, 0xF6, 
  0x0E, 0x8E, 0x4E, 0xCE, 0x2E, 0xAE, 0x6E, 0xEE, 0x1E, 0x9E, 0x5E, 0xDE, 0x3E, 0xBE, 0x7E, 0xFE,
  0x01, 0x81, 0x41, 0xC1, 0x21, 0xA1, 0x61, 0xE1, 0x11, 0x91, 0x51, 0xD1, 0x31, 0xB1, 0x71, 0xF1,
  0x09, 0x89, 0x49, 0xC9, 0x29, 0xA9, 0x69, 0xE9, 0x19, 0x99, 0x59, 0xD9, 0x39, 0xB9, 0x79, 0xF9, 
  0x05, 0x85, 0x45, 0xC5, 0x25, 0xA5, 0x65, 0xE5, 0x15, 0x95, 0x55, 0xD5, 0x35, 0xB5, 0x75, 0xF5,
  0x0D, 0x8D, 0x4D, 0xCD, 0x2D, 0xAD, 0x6D, 0xED, 0x1D, 0x9D, 0x5D, 0xDD, 0x3D, 0xBD, 0x7D, 0xFD,
  0x03, 0x83, 0x43, 0xC3, 0x23, 0xA3, 0x63, 0xE3, 0x13, 0x93, 0x53, 0xD3, 0x33, 0xB3, 0x73, 0xF3, 
  0x0B, 0x8B, 0x4B, 0xCB, 0x2B, 0xAB, 0x6B, 0xEB, 0x1B, 0x9B, 0x5B, 0xDB, 0x3B, 0xBB, 0x7B, 0xFB,
  0x07, 0x87, 0x47, 0xC7, 0x27, 0xA7, 0x67, 0xE7, 0x17, 0x97, 0x57, 0xD7, 0x37, 0xB7, 0x77, 0xF7, 
  0x0F, 0x8F, 0x4F, 0xCF, 0x2F, 0xAF, 0x6F, 0xEF, 0x1F, 0x9F, 0x5F, 0xDF, 0x3F, 0xBF, 0x7F, 0xFF
};

unsigned int v; // reverse 32-bit value, 8 bits at time
unsigned int c; // c will get v reversed

// Option 1:
c = (BitReverseTable256[v & 0xff] << 24) | 
    (BitReverseTable256[(v >> 8) & 0xff] << 16) | 
    (BitReverseTable256[(v >> 16) & 0xff] << 8) |
    (BitReverseTable256[(v >> 24) & 0xff]);

// Option 2:
unsigned char * p = (unsigned char *) &v;
unsigned char * q = (unsigned char *) &c;
q[3] = BitReverseTable256[p[0]]; 
q[2] = BitReverseTable256[p[1]]; 
q[1] = BitReverseTable256[p[2]]; 
q[0] = BitReverseTable256[p[3]];

您可以将此想法扩展到64位整数,或者为了速度而牺牲内存(假设L1数据缓存足够大),并使用一个64k条目查找表一次反向16位。


其他人

简单的

unsigned int v;     // input bits to be reversed
unsigned int r = v & 1; // r will be reversed bits of v; first get LSB of v
int s = sizeof(v) * CHAR_BIT - 1; // extra shift needed at end

for (v >>= 1; v; v >>= 1)
{   
  r <<= 1;
  r |= v & 1;
  s--;
}
r <<= s; // shift when v's highest bits are zero

更快(32位处理器)

unsigned char b = x;
b = ((b * 0x0802LU & 0x22110LU) | (b * 0x8020LU & 0x88440LU)) * 0x10101LU >> 16; 

更快(64位处理器)

unsigned char b; // reverse this (8-bit) byte
b = (b * 0x0202020202ULL & 0x010884422010ULL) % 1023;

如果您想在32位整型上执行此操作,只需反转每个字节中的位,并反转字节的顺序。那就是:

unsigned int toReverse;
unsigned int reversed;
unsigned char inByte0 = (toReverse & 0xFF);
unsigned char inByte1 = (toReverse & 0xFF00) >> 8;
unsigned char inByte2 = (toReverse & 0xFF0000) >> 16;
unsigned char inByte3 = (toReverse & 0xFF000000) >> 24;
reversed = (reverseBits(inByte0) << 24) | (reverseBits(inByte1) << 16) | (reverseBits(inByte2) << 8) | (reverseBits(inByte3);

结果

我对两种最有希望的解决方案进行了基准测试,查找表和按位and(第一个)。测试机器是一台带有4GB DDR2-800和酷睿2 Duo T7500 @ 2.4GHz, 4MB L2缓存的笔记本电脑;YMMV。我在64位Linux上使用gcc 4.3.2。OpenMP(和GCC绑定)用于高分辨率计时器。

reverse.c

#include <stdlib.h>
#include <stdio.h>
#include <omp.h>

unsigned int
reverse(register unsigned int x)
{
    x = (((x & 0xaaaaaaaa) >> 1) | ((x & 0x55555555) << 1));
    x = (((x & 0xcccccccc) >> 2) | ((x & 0x33333333) << 2));
    x = (((x & 0xf0f0f0f0) >> 4) | ((x & 0x0f0f0f0f) << 4));
    x = (((x & 0xff00ff00) >> 8) | ((x & 0x00ff00ff) << 8));
    return((x >> 16) | (x << 16));

}

int main()
{
    unsigned int *ints = malloc(100000000*sizeof(unsigned int));
    unsigned int *ints2 = malloc(100000000*sizeof(unsigned int));
    for(unsigned int i = 0; i < 100000000; i++)
      ints[i] = rand();

    unsigned int *inptr = ints;
    unsigned int *outptr = ints2;
    unsigned int *endptr = ints + 100000000;
    // Starting the time measurement
    double start = omp_get_wtime();
    // Computations to be measured
    while(inptr != endptr)
    {
      (*outptr) = reverse(*inptr);
      inptr++;
      outptr++;
    }
    // Measuring the elapsed time
    double end = omp_get_wtime();
    // Time calculation (in seconds)
    printf("Time: %f seconds\n", end-start);

    free(ints);
    free(ints2);

    return 0;
}

reverse_lookup.c

#include <stdlib.h>
#include <stdio.h>
#include <omp.h>

static const unsigned char BitReverseTable256[] = 
{
  0x00, 0x80, 0x40, 0xC0, 0x20, 0xA0, 0x60, 0xE0, 0x10, 0x90, 0x50, 0xD0, 0x30, 0xB0, 0x70, 0xF0, 
  0x08, 0x88, 0x48, 0xC8, 0x28, 0xA8, 0x68, 0xE8, 0x18, 0x98, 0x58, 0xD8, 0x38, 0xB8, 0x78, 0xF8, 
  0x04, 0x84, 0x44, 0xC4, 0x24, 0xA4, 0x64, 0xE4, 0x14, 0x94, 0x54, 0xD4, 0x34, 0xB4, 0x74, 0xF4, 
  0x0C, 0x8C, 0x4C, 0xCC, 0x2C, 0xAC, 0x6C, 0xEC, 0x1C, 0x9C, 0x5C, 0xDC, 0x3C, 0xBC, 0x7C, 0xFC, 
  0x02, 0x82, 0x42, 0xC2, 0x22, 0xA2, 0x62, 0xE2, 0x12, 0x92, 0x52, 0xD2, 0x32, 0xB2, 0x72, 0xF2, 
  0x0A, 0x8A, 0x4A, 0xCA, 0x2A, 0xAA, 0x6A, 0xEA, 0x1A, 0x9A, 0x5A, 0xDA, 0x3A, 0xBA, 0x7A, 0xFA,
  0x06, 0x86, 0x46, 0xC6, 0x26, 0xA6, 0x66, 0xE6, 0x16, 0x96, 0x56, 0xD6, 0x36, 0xB6, 0x76, 0xF6, 
  0x0E, 0x8E, 0x4E, 0xCE, 0x2E, 0xAE, 0x6E, 0xEE, 0x1E, 0x9E, 0x5E, 0xDE, 0x3E, 0xBE, 0x7E, 0xFE,
  0x01, 0x81, 0x41, 0xC1, 0x21, 0xA1, 0x61, 0xE1, 0x11, 0x91, 0x51, 0xD1, 0x31, 0xB1, 0x71, 0xF1,
  0x09, 0x89, 0x49, 0xC9, 0x29, 0xA9, 0x69, 0xE9, 0x19, 0x99, 0x59, 0xD9, 0x39, 0xB9, 0x79, 0xF9, 
  0x05, 0x85, 0x45, 0xC5, 0x25, 0xA5, 0x65, 0xE5, 0x15, 0x95, 0x55, 0xD5, 0x35, 0xB5, 0x75, 0xF5,
  0x0D, 0x8D, 0x4D, 0xCD, 0x2D, 0xAD, 0x6D, 0xED, 0x1D, 0x9D, 0x5D, 0xDD, 0x3D, 0xBD, 0x7D, 0xFD,
  0x03, 0x83, 0x43, 0xC3, 0x23, 0xA3, 0x63, 0xE3, 0x13, 0x93, 0x53, 0xD3, 0x33, 0xB3, 0x73, 0xF3, 
  0x0B, 0x8B, 0x4B, 0xCB, 0x2B, 0xAB, 0x6B, 0xEB, 0x1B, 0x9B, 0x5B, 0xDB, 0x3B, 0xBB, 0x7B, 0xFB,
  0x07, 0x87, 0x47, 0xC7, 0x27, 0xA7, 0x67, 0xE7, 0x17, 0x97, 0x57, 0xD7, 0x37, 0xB7, 0x77, 0xF7, 
  0x0F, 0x8F, 0x4F, 0xCF, 0x2F, 0xAF, 0x6F, 0xEF, 0x1F, 0x9F, 0x5F, 0xDF, 0x3F, 0xBF, 0x7F, 0xFF
};

int main()
{
    unsigned int *ints = malloc(100000000*sizeof(unsigned int));
    unsigned int *ints2 = malloc(100000000*sizeof(unsigned int));
    for(unsigned int i = 0; i < 100000000; i++)
      ints[i] = rand();

    unsigned int *inptr = ints;
    unsigned int *outptr = ints2;
    unsigned int *endptr = ints + 100000000;
    // Starting the time measurement
    double start = omp_get_wtime();
    // Computations to be measured
    while(inptr != endptr)
    {
    unsigned int in = *inptr;  

    // Option 1:
    //*outptr = (BitReverseTable256[in & 0xff] << 24) | 
    //    (BitReverseTable256[(in >> 8) & 0xff] << 16) | 
    //    (BitReverseTable256[(in >> 16) & 0xff] << 8) |
    //    (BitReverseTable256[(in >> 24) & 0xff]);

    // Option 2:
    unsigned char * p = (unsigned char *) &(*inptr);
    unsigned char * q = (unsigned char *) &(*outptr);
    q[3] = BitReverseTable256[p[0]]; 
    q[2] = BitReverseTable256[p[1]]; 
    q[1] = BitReverseTable256[p[2]]; 
    q[0] = BitReverseTable256[p[3]];

      inptr++;
      outptr++;
    }
    // Measuring the elapsed time
    double end = omp_get_wtime();
    // Time calculation (in seconds)
    printf("Time: %f seconds\n", end-start);

    free(ints);
    free(ints2);

    return 0;
}

我在几个不同的优化中尝试了这两种方法,在每个级别上进行了3次试验,每次试验逆转了1亿个随机无符号整数。对于查找表选项,我尝试了按位hacks页面上给出的两种方案(选项1和2)。结果如下所示。

位和

mrj10@mjlap:~/code$ gcc -fopenmp -std=c99 -o reverse reverse.c
mrj10@mjlap:~/code$ ./reverse
Time: 2.000593 seconds
mrj10@mjlap:~/code$ ./reverse
Time: 1.938893 seconds
mrj10@mjlap:~/code$ ./reverse
Time: 1.936365 seconds
mrj10@mjlap:~/code$ gcc -fopenmp -std=c99 -O2 -o reverse reverse.c
mrj10@mjlap:~/code$ ./reverse
Time: 0.942709 seconds
mrj10@mjlap:~/code$ ./reverse
Time: 0.991104 seconds
mrj10@mjlap:~/code$ ./reverse
Time: 0.947203 seconds
mrj10@mjlap:~/code$ gcc -fopenmp -std=c99 -O3 -o reverse reverse.c
mrj10@mjlap:~/code$ ./reverse
Time: 0.922639 seconds
mrj10@mjlap:~/code$ ./reverse
Time: 0.892372 seconds
mrj10@mjlap:~/code$ ./reverse
Time: 0.891688 seconds

查阅表(选项1)

mrj10@mjlap:~/code$ gcc -fopenmp -std=c99 -o reverse_lookup reverse_lookup.c
mrj10@mjlap:~/code$ ./reverse_lookup
Time: 1.201127 seconds              
mrj10@mjlap:~/code$ ./reverse_lookup
Time: 1.196129 seconds              
mrj10@mjlap:~/code$ ./reverse_lookup
Time: 1.235972 seconds              
mrj10@mjlap:~/code$ gcc -fopenmp -std=c99 -O2 -o reverse_lookup reverse_lookup.c
mrj10@mjlap:~/code$ ./reverse_lookup
Time: 0.633042 seconds              
mrj10@mjlap:~/code$ ./reverse_lookup
Time: 0.655880 seconds              
mrj10@mjlap:~/code$ ./reverse_lookup
Time: 0.633390 seconds              
mrj10@mjlap:~/code$ gcc -fopenmp -std=c99 -O3 -o reverse_lookup reverse_lookup.c
mrj10@mjlap:~/code$ ./reverse_lookup
Time: 0.652322 seconds              
mrj10@mjlap:~/code$ ./reverse_lookup
Time: 0.631739 seconds              
mrj10@mjlap:~/code$ ./reverse_lookup
Time: 0.652431 seconds  

查找表(选项2)

mrj10@mjlap:~/code$ gcc -fopenmp -std=c99 -o reverse_lookup reverse_lookup.c
mrj10@mjlap:~/code$ ./reverse_lookup
Time: 1.671537 seconds
mrj10@mjlap:~/code$ ./reverse_lookup
Time: 1.688173 seconds
mrj10@mjlap:~/code$ ./reverse_lookup
Time: 1.664662 seconds
mrj10@mjlap:~/code$ gcc -fopenmp -std=c99 -O2 -o reverse_lookup reverse_lookup.c
mrj10@mjlap:~/code$ ./reverse_lookup
Time: 1.049851 seconds
mrj10@mjlap:~/code$ ./reverse_lookup
Time: 1.048403 seconds
mrj10@mjlap:~/code$ ./reverse_lookup
Time: 1.085086 seconds
mrj10@mjlap:~/code$ gcc -fopenmp -std=c99 -O3 -o reverse_lookup reverse_lookup.c
mrj10@mjlap:~/code$ ./reverse_lookup
Time: 1.082223 seconds
mrj10@mjlap:~/code$ ./reverse_lookup
Time: 1.053431 seconds
mrj10@mjlap:~/code$ ./reverse_lookup
Time: 1.081224 seconds

结论

如果您关心性能,请使用选项1(字节寻址速度慢,这是意料中事)的查找表。如果您需要从系统中挤出最后一个字节的内存(如果您关心位反转的性能,您可能会这样做),那么按位- and方法的优化版本也不会太糟糕。

警告

是的,我知道基准代码完全是一种hack。关于如何改进它的建议非常受欢迎。我知道的事情:

I don't have access to ICC. This may be faster (please respond in a comment if you can test this out). A 64K lookup table may do well on some modern microarchitectures with large L1D. -mtune=native didn't work for -O2/-O3 (ld blew up with some crazy symbol redefinition error), so I don't believe the generated code is tuned for my microarchitecture. There may be a way to do this slightly faster with SSE. I have no idea how, but with fast replication, packed bitwise AND, and swizzling instructions, there's got to be something there. I know only enough x86 assembly to be dangerous; here's the code GCC generated on -O3 for option 1, so somebody more knowledgable than myself can check it out:

32位

.L3:
movl    (%r12,%rsi), %ecx
movzbl  %cl, %eax
movzbl  BitReverseTable256(%rax), %edx
movl    %ecx, %eax
shrl    $24, %eax
mov     %eax, %eax
movzbl  BitReverseTable256(%rax), %eax
sall    $24, %edx
orl     %eax, %edx
movzbl  %ch, %eax
shrl    $16, %ecx
movzbl  BitReverseTable256(%rax), %eax
movzbl  %cl, %ecx
sall    $16, %eax
orl     %eax, %edx
movzbl  BitReverseTable256(%rcx), %eax
sall    $8, %eax
orl     %eax, %edx
movl    %edx, (%r13,%rsi)
addq    $4, %rsi
cmpq    $400000000, %rsi
jne     .L3

编辑:我还尝试在我的机器上使用uint64_t类型,看看是否有任何性能提升。性能比32位快10%左右,无论您是一次使用64位类型对两个32位整型反转位,还是实际上将64位值的一半反转位,性能都几乎相同。汇编代码如下所示(对于前一种情况,一次为两个32位整型反转位):

.L3:
movq    (%r12,%rsi), %rdx
movq    %rdx, %rax
shrq    $24, %rax
andl    $255, %eax
movzbl  BitReverseTable256(%rax), %ecx
movzbq  %dl,%rax
movzbl  BitReverseTable256(%rax), %eax
salq    $24, %rax
orq     %rax, %rcx
movq    %rdx, %rax
shrq    $56, %rax
movzbl  BitReverseTable256(%rax), %eax
salq    $32, %rax
orq     %rax, %rcx
movzbl  %dh, %eax
shrq    $16, %rdx
movzbl  BitReverseTable256(%rax), %eax
salq    $16, %rax
orq     %rax, %rcx
movzbq  %dl,%rax
shrq    $16, %rdx
movzbl  BitReverseTable256(%rax), %eax
salq    $8, %rax
orq     %rax, %rcx
movzbq  %dl,%rax
shrq    $8, %rdx
movzbl  BitReverseTable256(%rax), %eax
salq    $56, %rax
orq     %rax, %rcx
movzbq  %dl,%rax
shrq    $8, %rdx
movzbl  BitReverseTable256(%rax), %eax
andl    $255, %edx
salq    $48, %rax
orq     %rax, %rcx
movzbl  BitReverseTable256(%rdx), %eax
salq    $40, %rax
orq     %rax, %rcx
movq    %rcx, (%r13,%rsi)
addq    $8, %rsi
cmpq    $400000000, %rsi
jne     .L3

好吧,这肯定不会是一个像Matt J的答案,但希望它仍然有用。

size_t reverse(size_t n, unsigned int bytes)
{
    __asm__("BSWAP %0" : "=r"(n) : "0"(n));
    n >>= ((sizeof(size_t) - bytes) * 8);
    n = ((n & 0xaaaaaaaaaaaaaaaa) >> 1) | ((n & 0x5555555555555555) << 1);
    n = ((n & 0xcccccccccccccccc) >> 2) | ((n & 0x3333333333333333) << 2);
    n = ((n & 0xf0f0f0f0f0f0f0f0) >> 4) | ((n & 0x0f0f0f0f0f0f0f0f) << 4);
    return n;
}

这与Matt的最佳算法完全相同,除了有一个叫做BSWAP的小指令,它交换64位数字的字节(而不是位)。所以b7 b6 b5 b4 b3 b2 b1 b0变成了b0 b1 b2 b3 b4 b5 b6 b7。由于我们处理的是32位数字,所以需要将字节交换后的数字向下移动32位。这只留给我们交换每个字节的8位的任务,这是完成的,瞧!我们做完了。

计时:在我的机器上,Matt的算法每次试验只需0.52秒。我的每次试验大约耗时0.42秒。我认为快20%还不错。

如果你担心指令BSWAP的可用性,维基百科列出了指令BSWAP是与1989年推出的80846一起添加的。值得注意的是,维基百科还指出,这条指令只适用于32位寄存器,这显然不是我的机器上的情况,它只适用于64位寄存器。

此方法同样适用于任何整型数据类型,因此可以通过传递所需的字节数来简单地推广该方法:

    size_t reverse(size_t n, unsigned int bytes)
    {
        __asm__("BSWAP %0" : "=r"(n) : "0"(n));
        n >>= ((sizeof(size_t) - bytes) * 8);
        n = ((n & 0xaaaaaaaaaaaaaaaa) >> 1) | ((n & 0x5555555555555555) << 1);
        n = ((n & 0xcccccccccccccccc) >> 2) | ((n & 0x3333333333333333) << 2);
        n = ((n & 0xf0f0f0f0f0f0f0f0) >> 4) | ((n & 0x0f0f0f0f0f0f0f0f) << 4);
        return n;
    }

它可以被称为:

    n = reverse(n, sizeof(char));//only reverse 8 bits
    n = reverse(n, sizeof(short));//reverse 16 bits
    n = reverse(n, sizeof(int));//reverse 32 bits
    n = reverse(n, sizeof(size_t));//reverse 64 bits

编译器应该能够优化掉额外的形参(假设编译器内联了函数),对于sizeof(size_t)情况,右移将被完全删除。注意,如果传递sizeof(char), GCC至少不能删除BSWAP和右移。

我很好奇原始旋转有多快。 在我的机器(i7@2600)上,1,500,150,000次迭代的平均值为27.28 ns(在131,071个64位整数的随机集上)。

优点:占用内存少,代码简单。我想说它也没有那么大。对于任何输入(128个算术SHIFT运算+ 64个逻辑and运算+ 64个逻辑OR运算),所需的时间都是可预测的常量。

我比较了@Matt J获得的最佳时间,他有公认的答案。如果我没有看错他的答案,他得到的最好结果是0.631739秒,100万次迭代,这导致平均每次旋转631 ns。

我使用的代码片段如下:

unsigned long long reverse_long(unsigned long long x)
{
    return (((x >> 0) & 1) << 63) |
           (((x >> 1) & 1) << 62) |
           (((x >> 2) & 1) << 61) |
           (((x >> 3) & 1) << 60) |
           (((x >> 4) & 1) << 59) |
           (((x >> 5) & 1) << 58) |
           (((x >> 6) & 1) << 57) |
           (((x >> 7) & 1) << 56) |
           (((x >> 8) & 1) << 55) |
           (((x >> 9) & 1) << 54) |
           (((x >> 10) & 1) << 53) |
           (((x >> 11) & 1) << 52) |
           (((x >> 12) & 1) << 51) |
           (((x >> 13) & 1) << 50) |
           (((x >> 14) & 1) << 49) |
           (((x >> 15) & 1) << 48) |
           (((x >> 16) & 1) << 47) |
           (((x >> 17) & 1) << 46) |
           (((x >> 18) & 1) << 45) |
           (((x >> 19) & 1) << 44) |
           (((x >> 20) & 1) << 43) |
           (((x >> 21) & 1) << 42) |
           (((x >> 22) & 1) << 41) |
           (((x >> 23) & 1) << 40) |
           (((x >> 24) & 1) << 39) |
           (((x >> 25) & 1) << 38) |
           (((x >> 26) & 1) << 37) |
           (((x >> 27) & 1) << 36) |
           (((x >> 28) & 1) << 35) |
           (((x >> 29) & 1) << 34) |
           (((x >> 30) & 1) << 33) |
           (((x >> 31) & 1) << 32) |
           (((x >> 32) & 1) << 31) |
           (((x >> 33) & 1) << 30) |
           (((x >> 34) & 1) << 29) |
           (((x >> 35) & 1) << 28) |
           (((x >> 36) & 1) << 27) |
           (((x >> 37) & 1) << 26) |
           (((x >> 38) & 1) << 25) |
           (((x >> 39) & 1) << 24) |
           (((x >> 40) & 1) << 23) |
           (((x >> 41) & 1) << 22) |
           (((x >> 42) & 1) << 21) |
           (((x >> 43) & 1) << 20) |
           (((x >> 44) & 1) << 19) |
           (((x >> 45) & 1) << 18) |
           (((x >> 46) & 1) << 17) |
           (((x >> 47) & 1) << 16) |
           (((x >> 48) & 1) << 15) |
           (((x >> 49) & 1) << 14) |
           (((x >> 50) & 1) << 13) |
           (((x >> 51) & 1) << 12) |
           (((x >> 52) & 1) << 11) |
           (((x >> 53) & 1) << 10) |
           (((x >> 54) & 1) << 9) |
           (((x >> 55) & 1) << 8) |
           (((x >> 56) & 1) << 7) |
           (((x >> 57) & 1) << 6) |
           (((x >> 58) & 1) << 5) |
           (((x >> 59) & 1) << 4) |
           (((x >> 60) & 1) << 3) |
           (((x >> 61) & 1) << 2) |
           (((x >> 62) & 1) << 1) |
           (((x >> 63) & 1) << 0);
}