实现以下目标最有效的算法是什么:

0010 0000 => 0000 0100

从MSB->LSB转换为LSB->MSB。所有位都必须反转;也就是说,这不是字节交换。


当前回答

通用的

C代码。以1字节输入数据num为例。

    unsigned char num = 0xaa;   // 1010 1010 (aa) -> 0101 0101 (55)
    int s = sizeof(num) * 8;    // get number of bits
    int i, x, y, p;
    int var = 0;                // make var data type to be equal or larger than num

    for (i = 0; i < (s / 2); i++) {
        // extract bit on the left, from MSB
        p = s - i - 1;
        x = num & (1 << p);
        x = x >> p;
        printf("x: %d\n", x);

        // extract bit on the right, from LSB
        y = num & (1 << i);
        y = y >> i;
        printf("y: %d\n", y);

        var = var | (x << i);       // apply x
        var = var | (y << p);       // apply y
    }

    printf("new: 0x%x\n", new);

其他回答

对于喜欢递归的人来说,这是另一个解决方案。

这个想法很简单。 将输入除以一半并交换两部分,继续直到达到单个位。

Illustrated in the example below.

Ex : If Input is 00101010   ==> Expected output is 01010100

1. Divide the input into 2 halves 
    0010 --- 1010

2. Swap the 2 Halves
    1010     0010

3. Repeat the same for each half.
    10 -- 10 ---  00 -- 10
    10    10      10    00

    1-0 -- 1-0 --- 1-0 -- 0-0
    0 1    0 1     0 1    0 0

Done! Output is 01010100

这里有一个递归函数来求解。(注意,我使用了unsigned int,所以它可以用于sizeof(unsigned int)*8位的输入。

递归函数有两个参数-需要位的值 要反转的值和值中的比特数。

int reverse_bits_recursive(unsigned int num, unsigned int numBits)
{
    unsigned int reversedNum;;
    unsigned int mask = 0;

    mask = (0x1 << (numBits/2)) - 1;

    if (numBits == 1) return num;
    reversedNum = reverse_bits_recursive(num >> numBits/2, numBits/2) |
                   reverse_bits_recursive((num & mask), numBits/2) << numBits/2;
    return reversedNum;
}

int main()
{
    unsigned int reversedNum;
    unsigned int num;

    num = 0x55;
    reversedNum = reverse_bits_recursive(num, 8);
    printf ("Bit Reversal Input = 0x%x Output = 0x%x\n", num, reversedNum);

    num = 0xabcd;
    reversedNum = reverse_bits_recursive(num, 16);
    printf ("Bit Reversal Input = 0x%x Output = 0x%x\n", num, reversedNum);

    num = 0x123456;
    reversedNum = reverse_bits_recursive(num, 24);
    printf ("Bit Reversal Input = 0x%x Output = 0x%x\n", num, reversedNum);

    num = 0x11223344;
    reversedNum = reverse_bits_recursive(num,32);
    printf ("Bit Reversal Input = 0x%x Output = 0x%x\n", num, reversedNum);
}

输出如下:

Bit Reversal Input = 0x55 Output = 0xaa
Bit Reversal Input = 0xabcd Output = 0xb3d5
Bit Reversal Input = 0x123456 Output = 0x651690
Bit Reversal Input = 0x11223344 Output = 0x22cc4488

好吧,这基本上与第一个“reverse()”相同,但它是64位的,只需要从指令流中加载一个即时掩码。GCC创建的代码没有跳转,所以这应该是相当快的。

#include <stdio.h>

static unsigned long long swap64(unsigned long long val)
{
#define ZZZZ(x,s,m) (((x) >>(s)) & (m)) | (((x) & (m))<<(s));
/* val = (((val) >>16) & 0xFFFF0000FFFF) | (((val) & 0xFFFF0000FFFF)<<16); */

val = ZZZZ(val,32,  0x00000000FFFFFFFFull );
val = ZZZZ(val,16,  0x0000FFFF0000FFFFull );
val = ZZZZ(val,8,   0x00FF00FF00FF00FFull );
val = ZZZZ(val,4,   0x0F0F0F0F0F0F0F0Full );
val = ZZZZ(val,2,   0x3333333333333333ull );
val = ZZZZ(val,1,   0x5555555555555555ull );

return val;
#undef ZZZZ
}

int main(void)
{
unsigned long long val, aaaa[16] =
 { 0xfedcba9876543210,0xedcba9876543210f,0xdcba9876543210fe,0xcba9876543210fed
 , 0xba9876543210fedc,0xa9876543210fedcb,0x9876543210fedcba,0x876543210fedcba9
 , 0x76543210fedcba98,0x6543210fedcba987,0x543210fedcba9876,0x43210fedcba98765
 , 0x3210fedcba987654,0x210fedcba9876543,0x10fedcba98765432,0x0fedcba987654321
 };
unsigned iii;

for (iii=0; iii < 16; iii++) {
    val = swap64 (aaaa[iii]);
    printf("A[]=%016llX Sw=%016llx\n", aaaa[iii], val);
    }
return 0;
}

这是32位,如果我们考虑8位,我们需要改变大小。

    void bitReverse(int num)
    {
        int num_reverse = 0;
        int size = (sizeof(int)*8) -1;
        int i=0,j=0;
        for(i=0,j=size;i<=size,j>=0;i++,j--)
        {
            if((num >> i)&1)
            {
                num_reverse = (num_reverse | (1<<j));
            }
        }
        printf("\n rev num = %d\n",num_reverse);
    }

按LSB->MSB顺序读取输入整数“num”,并按MSB->LSB顺序存储在num_reverse中。

高效意味着吞吐量或延迟。

从头到尾,看看安德斯·塞德罗尼厄斯的回答,很好。

为了降低延迟,我推荐以下代码:

uint32_t reverseBits( uint32_t x )
{
#if defined(__arm__) || defined(__aarch64__)
    __asm__( "rbit %0, %1" : "=r" ( x ) : "r" ( x ) );
    return x;
#endif
    // Flip pairwise
    x = ( ( x & 0x55555555 ) << 1 ) | ( ( x & 0xAAAAAAAA ) >> 1 );
    // Flip pairs
    x = ( ( x & 0x33333333 ) << 2 ) | ( ( x & 0xCCCCCCCC ) >> 2 );
    // Flip nibbles
    x = ( ( x & 0x0F0F0F0F ) << 4 ) | ( ( x & 0xF0F0F0F0 ) >> 4 );

    // Flip bytes. CPUs have an instruction for that, pretty fast one.
#ifdef _MSC_VER
    return _byteswap_ulong( x );
#elif defined(__INTEL_COMPILER)
    return (uint32_t)_bswap( (int)x );
#else
    // Assuming gcc or clang
    return __builtin_bswap32( x );
#endif
}

编译器输出:https://godbolt.org/z/5ehd89

Anders Cedronius的答案为那些拥有支持AVX2的x86 CPU的人提供了一个很好的解决方案。对于没有AVX支持的x86平台或非x86平台,以下任何一种实现都应该工作良好。

第一个代码是经典二进制分区方法的一个变体,编码的目的是最大限度地利用shift-plus-logic习惯用法,这种习惯用法在各种ARM处理器上都很有用。此外,它使用动态掩码生成,这对于需要多个指令来加载每个32位掩码值的RISC处理器是有益的。x86平台的编译器应该在编译时而不是运行时使用常量传播来计算所有掩码。

/* Classic binary partitioning algorithm */
inline uint32_t brev_classic (uint32_t a)
{
    uint32_t m;
    a = (a >> 16) | (a << 16);                            // swap halfwords
    m = 0x00ff00ff; a = ((a >> 8) & m) | ((a << 8) & ~m); // swap bytes
    m = m^(m << 4); a = ((a >> 4) & m) | ((a << 4) & ~m); // swap nibbles
    m = m^(m << 2); a = ((a >> 2) & m) | ((a << 2) & ~m);
    m = m^(m << 1); a = ((a >> 1) & m) | ((a << 1) & ~m);
    return a;
}

在“计算机编程艺术”的第4A卷中,D. Knuth展示了反转位的聪明方法,这比经典的二进制分区算法所需的操作少得令人惊讶。一个这样的32位操作数算法,我在TAOCP中找不到,在Hacker’s Delight网站上的这个文档中显示。

/* Knuth's algorithm from http://www.hackersdelight.org/revisions.pdf. Retrieved 8/19/2015 */
inline uint32_t brev_knuth (uint32_t a)
{
    uint32_t t;
    a = (a << 15) | (a >> 17);
    t = (a ^ (a >> 10)) & 0x003f801f; 
    a = (t + (t << 10)) ^ a;
    t = (a ^ (a >>  4)) & 0x0e038421; 
    a = (t + (t <<  4)) ^ a;
    t = (a ^ (a >>  2)) & 0x22488842; 
    a = (t + (t <<  2)) ^ a;
    return a;
}

使用Intel编译器C/ c++编译器13.1.3.198,上述两个函数都能很好地自动向量化XMM寄存器。它们也可以手动向量化,而不需要很多努力。

在我的IvyBridge Xeon E3 1270v2上,使用自动向量化代码,1亿uint32_t字在0.070秒内使用brev_classic()位反转,0.068秒使用brev_knuth()位反转。我注意确保我的基准测试不受系统内存带宽的限制。