实现以下目标最有效的算法是什么:

0010 0000 => 0000 0100

从MSB->LSB转换为LSB->MSB。所有位都必须反转;也就是说,这不是字节交换。


当前回答

这不是人类能做的工作!... 但非常适合做机器

这是2015年,距离第一次提出这个问题已经过去了6年。编译器从此成为我们的主人,而我们作为人类的工作只是帮助它们。那么,把我们的意图传达给机器的最佳方式是什么呢?

位反转是如此普遍,以至于你不得不怀疑为什么x86不断增长的ISA没有包含一次性完成它的指令。

原因是:如果你给编译器一个真正简洁的意图,位反转应该只需要大约20个CPU周期。让我向你展示如何制作reverse()并使用它:

#include <inttypes.h>
#include <stdio.h>

uint64_t reverse(const uint64_t n,
                 const uint64_t k)
{
        uint64_t r, i;
        for (r = 0, i = 0; i < k; ++i)
                r |= ((n >> i) & 1) << (k - i - 1);
        return r;
}

int main()
{
        const uint64_t size = 64;
        uint64_t sum = 0;
        uint64_t a;
        for (a = 0; a < (uint64_t)1 << 30; ++a)
                sum += reverse(a, size);
        printf("%" PRIu64 "\n", sum);
        return 0;
}

使用Clang版本>= 3.6,-O3, -march=native(用Haswell测试)编译这个示例程序,使用新的AVX2指令提供美术质量代码,运行时为11秒处理~ 10亿reverse()秒。这是~10 ns每反向(),0.5 ns CPU周期假设2 GHz,我们将达到甜蜜的20个CPU周期。

对于单个大数组,您可以在访问RAM一次所需的时间内放入10个reverse() ! 你可以在访问L2缓存LUT两次的时间里放入1个reverse()。

注意:这个示例代码应该可以作为一个不错的基准运行几年,但是一旦编译器足够聪明,可以优化main()只输出最终结果,而不是真正计算任何东西,它最终就会开始显得过时了。但目前它只用于展示reverse()。

其他回答

// Purpose: to reverse bits in an unsigned short integer 
// Input: an unsigned short integer whose bits are to be reversed
// Output: an unsigned short integer with the reversed bits of the input one
unsigned short ReverseBits( unsigned short a )
{
     // declare and initialize number of bits in the unsigned short integer
     const char num_bits = sizeof(a) * CHAR_BIT;

     // declare and initialize bitset representation of integer a
     bitset<num_bits> bitset_a(a);          

     // declare and initialize bitset representation of integer b (0000000000000000)
     bitset<num_bits> bitset_b(0);                  

     // declare and initialize bitset representation of mask (0000000000000001)
     bitset<num_bits> mask(1);          

     for ( char i = 0; i < num_bits; ++i )
     {
          bitset_b = (bitset_b << 1) | bitset_a & mask;
          bitset_a >>= 1;
     }

     return (unsigned short) bitset_b.to_ulong();
}

void PrintBits( unsigned short a )
{
     // declare and initialize bitset representation of a
     bitset<sizeof(a) * CHAR_BIT> bitset(a);

     // print out bits
     cout << bitset << endl;
}


// Testing the functionality of the code

int main ()
{
     unsigned short a = 17, b;

     cout << "Original: "; 
     PrintBits(a);

     b = ReverseBits( a );

     cout << "Reversed: ";
     PrintBits(b);
}

// Output:
Original: 0000000000010001
Reversed: 1000100000000000

注意:下面所有的算法都是用C语言编写的,但是应该可以移植到你所选择的语言中(当它们没有那么快的时候不要看着我:)

选项

低内存(32位int, 32位机器)(从这里):

unsigned int
reverse(register unsigned int x)
{
    x = (((x & 0xaaaaaaaa) >> 1) | ((x & 0x55555555) << 1));
    x = (((x & 0xcccccccc) >> 2) | ((x & 0x33333333) << 2));
    x = (((x & 0xf0f0f0f0) >> 4) | ((x & 0x0f0f0f0f) << 4));
    x = (((x & 0xff00ff00) >> 8) | ((x & 0x00ff00ff) << 8));
    return((x >> 16) | (x << 16));

}

来自著名的Bit Twiddling Hacks页面:

最快(查找表):

static const unsigned char BitReverseTable256[] = 
{
  0x00, 0x80, 0x40, 0xC0, 0x20, 0xA0, 0x60, 0xE0, 0x10, 0x90, 0x50, 0xD0, 0x30, 0xB0, 0x70, 0xF0, 
  0x08, 0x88, 0x48, 0xC8, 0x28, 0xA8, 0x68, 0xE8, 0x18, 0x98, 0x58, 0xD8, 0x38, 0xB8, 0x78, 0xF8, 
  0x04, 0x84, 0x44, 0xC4, 0x24, 0xA4, 0x64, 0xE4, 0x14, 0x94, 0x54, 0xD4, 0x34, 0xB4, 0x74, 0xF4, 
  0x0C, 0x8C, 0x4C, 0xCC, 0x2C, 0xAC, 0x6C, 0xEC, 0x1C, 0x9C, 0x5C, 0xDC, 0x3C, 0xBC, 0x7C, 0xFC, 
  0x02, 0x82, 0x42, 0xC2, 0x22, 0xA2, 0x62, 0xE2, 0x12, 0x92, 0x52, 0xD2, 0x32, 0xB2, 0x72, 0xF2, 
  0x0A, 0x8A, 0x4A, 0xCA, 0x2A, 0xAA, 0x6A, 0xEA, 0x1A, 0x9A, 0x5A, 0xDA, 0x3A, 0xBA, 0x7A, 0xFA,
  0x06, 0x86, 0x46, 0xC6, 0x26, 0xA6, 0x66, 0xE6, 0x16, 0x96, 0x56, 0xD6, 0x36, 0xB6, 0x76, 0xF6, 
  0x0E, 0x8E, 0x4E, 0xCE, 0x2E, 0xAE, 0x6E, 0xEE, 0x1E, 0x9E, 0x5E, 0xDE, 0x3E, 0xBE, 0x7E, 0xFE,
  0x01, 0x81, 0x41, 0xC1, 0x21, 0xA1, 0x61, 0xE1, 0x11, 0x91, 0x51, 0xD1, 0x31, 0xB1, 0x71, 0xF1,
  0x09, 0x89, 0x49, 0xC9, 0x29, 0xA9, 0x69, 0xE9, 0x19, 0x99, 0x59, 0xD9, 0x39, 0xB9, 0x79, 0xF9, 
  0x05, 0x85, 0x45, 0xC5, 0x25, 0xA5, 0x65, 0xE5, 0x15, 0x95, 0x55, 0xD5, 0x35, 0xB5, 0x75, 0xF5,
  0x0D, 0x8D, 0x4D, 0xCD, 0x2D, 0xAD, 0x6D, 0xED, 0x1D, 0x9D, 0x5D, 0xDD, 0x3D, 0xBD, 0x7D, 0xFD,
  0x03, 0x83, 0x43, 0xC3, 0x23, 0xA3, 0x63, 0xE3, 0x13, 0x93, 0x53, 0xD3, 0x33, 0xB3, 0x73, 0xF3, 
  0x0B, 0x8B, 0x4B, 0xCB, 0x2B, 0xAB, 0x6B, 0xEB, 0x1B, 0x9B, 0x5B, 0xDB, 0x3B, 0xBB, 0x7B, 0xFB,
  0x07, 0x87, 0x47, 0xC7, 0x27, 0xA7, 0x67, 0xE7, 0x17, 0x97, 0x57, 0xD7, 0x37, 0xB7, 0x77, 0xF7, 
  0x0F, 0x8F, 0x4F, 0xCF, 0x2F, 0xAF, 0x6F, 0xEF, 0x1F, 0x9F, 0x5F, 0xDF, 0x3F, 0xBF, 0x7F, 0xFF
};

unsigned int v; // reverse 32-bit value, 8 bits at time
unsigned int c; // c will get v reversed

// Option 1:
c = (BitReverseTable256[v & 0xff] << 24) | 
    (BitReverseTable256[(v >> 8) & 0xff] << 16) | 
    (BitReverseTable256[(v >> 16) & 0xff] << 8) |
    (BitReverseTable256[(v >> 24) & 0xff]);

// Option 2:
unsigned char * p = (unsigned char *) &v;
unsigned char * q = (unsigned char *) &c;
q[3] = BitReverseTable256[p[0]]; 
q[2] = BitReverseTable256[p[1]]; 
q[1] = BitReverseTable256[p[2]]; 
q[0] = BitReverseTable256[p[3]];

您可以将此想法扩展到64位整数,或者为了速度而牺牲内存(假设L1数据缓存足够大),并使用一个64k条目查找表一次反向16位。


其他人

简单的

unsigned int v;     // input bits to be reversed
unsigned int r = v & 1; // r will be reversed bits of v; first get LSB of v
int s = sizeof(v) * CHAR_BIT - 1; // extra shift needed at end

for (v >>= 1; v; v >>= 1)
{   
  r <<= 1;
  r |= v & 1;
  s--;
}
r <<= s; // shift when v's highest bits are zero

更快(32位处理器)

unsigned char b = x;
b = ((b * 0x0802LU & 0x22110LU) | (b * 0x8020LU & 0x88440LU)) * 0x10101LU >> 16; 

更快(64位处理器)

unsigned char b; // reverse this (8-bit) byte
b = (b * 0x0202020202ULL & 0x010884422010ULL) % 1023;

如果您想在32位整型上执行此操作,只需反转每个字节中的位,并反转字节的顺序。那就是:

unsigned int toReverse;
unsigned int reversed;
unsigned char inByte0 = (toReverse & 0xFF);
unsigned char inByte1 = (toReverse & 0xFF00) >> 8;
unsigned char inByte2 = (toReverse & 0xFF0000) >> 16;
unsigned char inByte3 = (toReverse & 0xFF000000) >> 24;
reversed = (reverseBits(inByte0) << 24) | (reverseBits(inByte1) << 16) | (reverseBits(inByte2) << 8) | (reverseBits(inByte3);

结果

我对两种最有希望的解决方案进行了基准测试,查找表和按位and(第一个)。测试机器是一台带有4GB DDR2-800和酷睿2 Duo T7500 @ 2.4GHz, 4MB L2缓存的笔记本电脑;YMMV。我在64位Linux上使用gcc 4.3.2。OpenMP(和GCC绑定)用于高分辨率计时器。

reverse.c

#include <stdlib.h>
#include <stdio.h>
#include <omp.h>

unsigned int
reverse(register unsigned int x)
{
    x = (((x & 0xaaaaaaaa) >> 1) | ((x & 0x55555555) << 1));
    x = (((x & 0xcccccccc) >> 2) | ((x & 0x33333333) << 2));
    x = (((x & 0xf0f0f0f0) >> 4) | ((x & 0x0f0f0f0f) << 4));
    x = (((x & 0xff00ff00) >> 8) | ((x & 0x00ff00ff) << 8));
    return((x >> 16) | (x << 16));

}

int main()
{
    unsigned int *ints = malloc(100000000*sizeof(unsigned int));
    unsigned int *ints2 = malloc(100000000*sizeof(unsigned int));
    for(unsigned int i = 0; i < 100000000; i++)
      ints[i] = rand();

    unsigned int *inptr = ints;
    unsigned int *outptr = ints2;
    unsigned int *endptr = ints + 100000000;
    // Starting the time measurement
    double start = omp_get_wtime();
    // Computations to be measured
    while(inptr != endptr)
    {
      (*outptr) = reverse(*inptr);
      inptr++;
      outptr++;
    }
    // Measuring the elapsed time
    double end = omp_get_wtime();
    // Time calculation (in seconds)
    printf("Time: %f seconds\n", end-start);

    free(ints);
    free(ints2);

    return 0;
}

reverse_lookup.c

#include <stdlib.h>
#include <stdio.h>
#include <omp.h>

static const unsigned char BitReverseTable256[] = 
{
  0x00, 0x80, 0x40, 0xC0, 0x20, 0xA0, 0x60, 0xE0, 0x10, 0x90, 0x50, 0xD0, 0x30, 0xB0, 0x70, 0xF0, 
  0x08, 0x88, 0x48, 0xC8, 0x28, 0xA8, 0x68, 0xE8, 0x18, 0x98, 0x58, 0xD8, 0x38, 0xB8, 0x78, 0xF8, 
  0x04, 0x84, 0x44, 0xC4, 0x24, 0xA4, 0x64, 0xE4, 0x14, 0x94, 0x54, 0xD4, 0x34, 0xB4, 0x74, 0xF4, 
  0x0C, 0x8C, 0x4C, 0xCC, 0x2C, 0xAC, 0x6C, 0xEC, 0x1C, 0x9C, 0x5C, 0xDC, 0x3C, 0xBC, 0x7C, 0xFC, 
  0x02, 0x82, 0x42, 0xC2, 0x22, 0xA2, 0x62, 0xE2, 0x12, 0x92, 0x52, 0xD2, 0x32, 0xB2, 0x72, 0xF2, 
  0x0A, 0x8A, 0x4A, 0xCA, 0x2A, 0xAA, 0x6A, 0xEA, 0x1A, 0x9A, 0x5A, 0xDA, 0x3A, 0xBA, 0x7A, 0xFA,
  0x06, 0x86, 0x46, 0xC6, 0x26, 0xA6, 0x66, 0xE6, 0x16, 0x96, 0x56, 0xD6, 0x36, 0xB6, 0x76, 0xF6, 
  0x0E, 0x8E, 0x4E, 0xCE, 0x2E, 0xAE, 0x6E, 0xEE, 0x1E, 0x9E, 0x5E, 0xDE, 0x3E, 0xBE, 0x7E, 0xFE,
  0x01, 0x81, 0x41, 0xC1, 0x21, 0xA1, 0x61, 0xE1, 0x11, 0x91, 0x51, 0xD1, 0x31, 0xB1, 0x71, 0xF1,
  0x09, 0x89, 0x49, 0xC9, 0x29, 0xA9, 0x69, 0xE9, 0x19, 0x99, 0x59, 0xD9, 0x39, 0xB9, 0x79, 0xF9, 
  0x05, 0x85, 0x45, 0xC5, 0x25, 0xA5, 0x65, 0xE5, 0x15, 0x95, 0x55, 0xD5, 0x35, 0xB5, 0x75, 0xF5,
  0x0D, 0x8D, 0x4D, 0xCD, 0x2D, 0xAD, 0x6D, 0xED, 0x1D, 0x9D, 0x5D, 0xDD, 0x3D, 0xBD, 0x7D, 0xFD,
  0x03, 0x83, 0x43, 0xC3, 0x23, 0xA3, 0x63, 0xE3, 0x13, 0x93, 0x53, 0xD3, 0x33, 0xB3, 0x73, 0xF3, 
  0x0B, 0x8B, 0x4B, 0xCB, 0x2B, 0xAB, 0x6B, 0xEB, 0x1B, 0x9B, 0x5B, 0xDB, 0x3B, 0xBB, 0x7B, 0xFB,
  0x07, 0x87, 0x47, 0xC7, 0x27, 0xA7, 0x67, 0xE7, 0x17, 0x97, 0x57, 0xD7, 0x37, 0xB7, 0x77, 0xF7, 
  0x0F, 0x8F, 0x4F, 0xCF, 0x2F, 0xAF, 0x6F, 0xEF, 0x1F, 0x9F, 0x5F, 0xDF, 0x3F, 0xBF, 0x7F, 0xFF
};

int main()
{
    unsigned int *ints = malloc(100000000*sizeof(unsigned int));
    unsigned int *ints2 = malloc(100000000*sizeof(unsigned int));
    for(unsigned int i = 0; i < 100000000; i++)
      ints[i] = rand();

    unsigned int *inptr = ints;
    unsigned int *outptr = ints2;
    unsigned int *endptr = ints + 100000000;
    // Starting the time measurement
    double start = omp_get_wtime();
    // Computations to be measured
    while(inptr != endptr)
    {
    unsigned int in = *inptr;  

    // Option 1:
    //*outptr = (BitReverseTable256[in & 0xff] << 24) | 
    //    (BitReverseTable256[(in >> 8) & 0xff] << 16) | 
    //    (BitReverseTable256[(in >> 16) & 0xff] << 8) |
    //    (BitReverseTable256[(in >> 24) & 0xff]);

    // Option 2:
    unsigned char * p = (unsigned char *) &(*inptr);
    unsigned char * q = (unsigned char *) &(*outptr);
    q[3] = BitReverseTable256[p[0]]; 
    q[2] = BitReverseTable256[p[1]]; 
    q[1] = BitReverseTable256[p[2]]; 
    q[0] = BitReverseTable256[p[3]];

      inptr++;
      outptr++;
    }
    // Measuring the elapsed time
    double end = omp_get_wtime();
    // Time calculation (in seconds)
    printf("Time: %f seconds\n", end-start);

    free(ints);
    free(ints2);

    return 0;
}

我在几个不同的优化中尝试了这两种方法,在每个级别上进行了3次试验,每次试验逆转了1亿个随机无符号整数。对于查找表选项,我尝试了按位hacks页面上给出的两种方案(选项1和2)。结果如下所示。

位和

mrj10@mjlap:~/code$ gcc -fopenmp -std=c99 -o reverse reverse.c
mrj10@mjlap:~/code$ ./reverse
Time: 2.000593 seconds
mrj10@mjlap:~/code$ ./reverse
Time: 1.938893 seconds
mrj10@mjlap:~/code$ ./reverse
Time: 1.936365 seconds
mrj10@mjlap:~/code$ gcc -fopenmp -std=c99 -O2 -o reverse reverse.c
mrj10@mjlap:~/code$ ./reverse
Time: 0.942709 seconds
mrj10@mjlap:~/code$ ./reverse
Time: 0.991104 seconds
mrj10@mjlap:~/code$ ./reverse
Time: 0.947203 seconds
mrj10@mjlap:~/code$ gcc -fopenmp -std=c99 -O3 -o reverse reverse.c
mrj10@mjlap:~/code$ ./reverse
Time: 0.922639 seconds
mrj10@mjlap:~/code$ ./reverse
Time: 0.892372 seconds
mrj10@mjlap:~/code$ ./reverse
Time: 0.891688 seconds

查阅表(选项1)

mrj10@mjlap:~/code$ gcc -fopenmp -std=c99 -o reverse_lookup reverse_lookup.c
mrj10@mjlap:~/code$ ./reverse_lookup
Time: 1.201127 seconds              
mrj10@mjlap:~/code$ ./reverse_lookup
Time: 1.196129 seconds              
mrj10@mjlap:~/code$ ./reverse_lookup
Time: 1.235972 seconds              
mrj10@mjlap:~/code$ gcc -fopenmp -std=c99 -O2 -o reverse_lookup reverse_lookup.c
mrj10@mjlap:~/code$ ./reverse_lookup
Time: 0.633042 seconds              
mrj10@mjlap:~/code$ ./reverse_lookup
Time: 0.655880 seconds              
mrj10@mjlap:~/code$ ./reverse_lookup
Time: 0.633390 seconds              
mrj10@mjlap:~/code$ gcc -fopenmp -std=c99 -O3 -o reverse_lookup reverse_lookup.c
mrj10@mjlap:~/code$ ./reverse_lookup
Time: 0.652322 seconds              
mrj10@mjlap:~/code$ ./reverse_lookup
Time: 0.631739 seconds              
mrj10@mjlap:~/code$ ./reverse_lookup
Time: 0.652431 seconds  

查找表(选项2)

mrj10@mjlap:~/code$ gcc -fopenmp -std=c99 -o reverse_lookup reverse_lookup.c
mrj10@mjlap:~/code$ ./reverse_lookup
Time: 1.671537 seconds
mrj10@mjlap:~/code$ ./reverse_lookup
Time: 1.688173 seconds
mrj10@mjlap:~/code$ ./reverse_lookup
Time: 1.664662 seconds
mrj10@mjlap:~/code$ gcc -fopenmp -std=c99 -O2 -o reverse_lookup reverse_lookup.c
mrj10@mjlap:~/code$ ./reverse_lookup
Time: 1.049851 seconds
mrj10@mjlap:~/code$ ./reverse_lookup
Time: 1.048403 seconds
mrj10@mjlap:~/code$ ./reverse_lookup
Time: 1.085086 seconds
mrj10@mjlap:~/code$ gcc -fopenmp -std=c99 -O3 -o reverse_lookup reverse_lookup.c
mrj10@mjlap:~/code$ ./reverse_lookup
Time: 1.082223 seconds
mrj10@mjlap:~/code$ ./reverse_lookup
Time: 1.053431 seconds
mrj10@mjlap:~/code$ ./reverse_lookup
Time: 1.081224 seconds

结论

如果您关心性能,请使用选项1(字节寻址速度慢,这是意料中事)的查找表。如果您需要从系统中挤出最后一个字节的内存(如果您关心位反转的性能,您可能会这样做),那么按位- and方法的优化版本也不会太糟糕。

警告

是的,我知道基准代码完全是一种hack。关于如何改进它的建议非常受欢迎。我知道的事情:

I don't have access to ICC. This may be faster (please respond in a comment if you can test this out). A 64K lookup table may do well on some modern microarchitectures with large L1D. -mtune=native didn't work for -O2/-O3 (ld blew up with some crazy symbol redefinition error), so I don't believe the generated code is tuned for my microarchitecture. There may be a way to do this slightly faster with SSE. I have no idea how, but with fast replication, packed bitwise AND, and swizzling instructions, there's got to be something there. I know only enough x86 assembly to be dangerous; here's the code GCC generated on -O3 for option 1, so somebody more knowledgable than myself can check it out:

32位

.L3:
movl    (%r12,%rsi), %ecx
movzbl  %cl, %eax
movzbl  BitReverseTable256(%rax), %edx
movl    %ecx, %eax
shrl    $24, %eax
mov     %eax, %eax
movzbl  BitReverseTable256(%rax), %eax
sall    $24, %edx
orl     %eax, %edx
movzbl  %ch, %eax
shrl    $16, %ecx
movzbl  BitReverseTable256(%rax), %eax
movzbl  %cl, %ecx
sall    $16, %eax
orl     %eax, %edx
movzbl  BitReverseTable256(%rcx), %eax
sall    $8, %eax
orl     %eax, %edx
movl    %edx, (%r13,%rsi)
addq    $4, %rsi
cmpq    $400000000, %rsi
jne     .L3

编辑:我还尝试在我的机器上使用uint64_t类型,看看是否有任何性能提升。性能比32位快10%左右,无论您是一次使用64位类型对两个32位整型反转位,还是实际上将64位值的一半反转位,性能都几乎相同。汇编代码如下所示(对于前一种情况,一次为两个32位整型反转位):

.L3:
movq    (%r12,%rsi), %rdx
movq    %rdx, %rax
shrq    $24, %rax
andl    $255, %eax
movzbl  BitReverseTable256(%rax), %ecx
movzbq  %dl,%rax
movzbl  BitReverseTable256(%rax), %eax
salq    $24, %rax
orq     %rax, %rcx
movq    %rdx, %rax
shrq    $56, %rax
movzbl  BitReverseTable256(%rax), %eax
salq    $32, %rax
orq     %rax, %rcx
movzbl  %dh, %eax
shrq    $16, %rdx
movzbl  BitReverseTable256(%rax), %eax
salq    $16, %rax
orq     %rax, %rcx
movzbq  %dl,%rax
shrq    $16, %rdx
movzbl  BitReverseTable256(%rax), %eax
salq    $8, %rax
orq     %rax, %rcx
movzbq  %dl,%rax
shrq    $8, %rdx
movzbl  BitReverseTable256(%rax), %eax
salq    $56, %rax
orq     %rax, %rcx
movzbq  %dl,%rax
shrq    $8, %rdx
movzbl  BitReverseTable256(%rax), %eax
andl    $255, %edx
salq    $48, %rax
orq     %rax, %rcx
movzbl  BitReverseTable256(%rdx), %eax
salq    $40, %rax
orq     %rax, %rcx
movq    %rcx, (%r13,%rsi)
addq    $8, %rsi
cmpq    $400000000, %rsi
jne     .L3

原生ARM指令“rbit”可以用1个cpu周期和1个额外的cpu寄存器来完成,不可能被击败。

假设你有一个比特数组,怎么样: 1. 从MSB开始,将比特一个一个地推入堆栈。 2. 从这个堆栈弹出位到另一个数组(如果你想节省空间,也可以是同一个数组),将第一个弹出位放入MSB,然后从那里继续到较低的有效位。

Stack stack = new Stack();
Bit[] bits = new Bit[] { 0, 0, 1, 0, 0, 0, 0, 0 };

for (int i = 0; i < bits.Length; i++) 
{
    stack.push(bits[i]);
}

for (int i = 0; i < bits.Length; i++)
{
    bits[i] = stack.pop();
}

Anders Cedronius的答案为那些拥有支持AVX2的x86 CPU的人提供了一个很好的解决方案。对于没有AVX支持的x86平台或非x86平台,以下任何一种实现都应该工作良好。

第一个代码是经典二进制分区方法的一个变体,编码的目的是最大限度地利用shift-plus-logic习惯用法,这种习惯用法在各种ARM处理器上都很有用。此外,它使用动态掩码生成,这对于需要多个指令来加载每个32位掩码值的RISC处理器是有益的。x86平台的编译器应该在编译时而不是运行时使用常量传播来计算所有掩码。

/* Classic binary partitioning algorithm */
inline uint32_t brev_classic (uint32_t a)
{
    uint32_t m;
    a = (a >> 16) | (a << 16);                            // swap halfwords
    m = 0x00ff00ff; a = ((a >> 8) & m) | ((a << 8) & ~m); // swap bytes
    m = m^(m << 4); a = ((a >> 4) & m) | ((a << 4) & ~m); // swap nibbles
    m = m^(m << 2); a = ((a >> 2) & m) | ((a << 2) & ~m);
    m = m^(m << 1); a = ((a >> 1) & m) | ((a << 1) & ~m);
    return a;
}

在“计算机编程艺术”的第4A卷中,D. Knuth展示了反转位的聪明方法,这比经典的二进制分区算法所需的操作少得令人惊讶。一个这样的32位操作数算法,我在TAOCP中找不到,在Hacker’s Delight网站上的这个文档中显示。

/* Knuth's algorithm from http://www.hackersdelight.org/revisions.pdf. Retrieved 8/19/2015 */
inline uint32_t brev_knuth (uint32_t a)
{
    uint32_t t;
    a = (a << 15) | (a >> 17);
    t = (a ^ (a >> 10)) & 0x003f801f; 
    a = (t + (t << 10)) ^ a;
    t = (a ^ (a >>  4)) & 0x0e038421; 
    a = (t + (t <<  4)) ^ a;
    t = (a ^ (a >>  2)) & 0x22488842; 
    a = (t + (t <<  2)) ^ a;
    return a;
}

使用Intel编译器C/ c++编译器13.1.3.198,上述两个函数都能很好地自动向量化XMM寄存器。它们也可以手动向量化,而不需要很多努力。

在我的IvyBridge Xeon E3 1270v2上,使用自动向量化代码,1亿uint32_t字在0.070秒内使用brev_classic()位反转,0.068秒使用brev_knuth()位反转。我注意确保我的基准测试不受系统内存带宽的限制。