实现以下目标最有效的算法是什么:

0010 0000 => 0000 0100

从MSB->LSB转换为LSB->MSB。所有位都必须反转;也就是说,这不是字节交换。


当前回答

似乎许多其他帖子都关心速度(即最好=最快)。 简单性怎么样?考虑:

char ReverseBits(char character) {
    char reversed_character = 0;
    for (int i = 0; i < 8; i++) {
        char ith_bit = (c >> i) & 1;
        reversed_character |= (ith_bit << (sizeof(char) - 1 - i));
    }
    return reversed_character;
}

并希望聪明的编译器将为您优化。

如果你想反转一个更长的位列表(包含sizeof(char) * n位),你可以使用这个函数得到:

void ReverseNumber(char* number, int bit_count_in_number) {
    int bytes_occupied = bit_count_in_number / sizeof(char);      

    // first reverse bytes
    for (int i = 0; i <= (bytes_occupied / 2); i++) {
        swap(long_number[i], long_number[n - i]);
    }

    // then reverse bits of each individual byte
    for (int i = 0; i < bytes_occupied; i++) {
         long_number[i] = ReverseBits(long_number[i]);
    }
}

这将把[10000000,10101010]反向转换为[01010101,00000001]。

其他回答

实现低内存和最快。

private Byte  BitReverse(Byte bData)
    {
        Byte[] lookup = { 0, 8,  4, 12, 
                          2, 10, 6, 14 , 
                          1, 9,  5, 13,
                          3, 11, 7, 15 };
        Byte ret_val = (Byte)(((lookup[(bData & 0x0F)]) << 4) + lookup[((bData & 0xF0) >> 4)]);
        return ret_val;
    }
unsigned char ReverseBits(unsigned char data)
{
    unsigned char k = 0, rev = 0;

    unsigned char n = data;

    while(n)

    {
        k = n & (~(n - 1));
        n &= (n - 1);
        rev |= (128 / k);
    }
    return rev;
}

似乎许多其他帖子都关心速度(即最好=最快)。 简单性怎么样?考虑:

char ReverseBits(char character) {
    char reversed_character = 0;
    for (int i = 0; i < 8; i++) {
        char ith_bit = (c >> i) & 1;
        reversed_character |= (ith_bit << (sizeof(char) - 1 - i));
    }
    return reversed_character;
}

并希望聪明的编译器将为您优化。

如果你想反转一个更长的位列表(包含sizeof(char) * n位),你可以使用这个函数得到:

void ReverseNumber(char* number, int bit_count_in_number) {
    int bytes_occupied = bit_count_in_number / sizeof(char);      

    // first reverse bytes
    for (int i = 0; i <= (bytes_occupied / 2); i++) {
        swap(long_number[i], long_number[n - i]);
    }

    // then reverse bits of each individual byte
    for (int i = 0; i < bytes_occupied; i++) {
         long_number[i] = ReverseBits(long_number[i]);
    }
}

这将把[10000000,10101010]反向转换为[01010101,00000001]。

原生ARM指令“rbit”可以用1个cpu周期和1个额外的cpu寄存器来完成,不可能被击败。

我很好奇原始旋转有多快。 在我的机器(i7@2600)上,1,500,150,000次迭代的平均值为27.28 ns(在131,071个64位整数的随机集上)。

优点:占用内存少,代码简单。我想说它也没有那么大。对于任何输入(128个算术SHIFT运算+ 64个逻辑and运算+ 64个逻辑OR运算),所需的时间都是可预测的常量。

我比较了@Matt J获得的最佳时间,他有公认的答案。如果我没有看错他的答案,他得到的最好结果是0.631739秒,100万次迭代,这导致平均每次旋转631 ns。

我使用的代码片段如下:

unsigned long long reverse_long(unsigned long long x)
{
    return (((x >> 0) & 1) << 63) |
           (((x >> 1) & 1) << 62) |
           (((x >> 2) & 1) << 61) |
           (((x >> 3) & 1) << 60) |
           (((x >> 4) & 1) << 59) |
           (((x >> 5) & 1) << 58) |
           (((x >> 6) & 1) << 57) |
           (((x >> 7) & 1) << 56) |
           (((x >> 8) & 1) << 55) |
           (((x >> 9) & 1) << 54) |
           (((x >> 10) & 1) << 53) |
           (((x >> 11) & 1) << 52) |
           (((x >> 12) & 1) << 51) |
           (((x >> 13) & 1) << 50) |
           (((x >> 14) & 1) << 49) |
           (((x >> 15) & 1) << 48) |
           (((x >> 16) & 1) << 47) |
           (((x >> 17) & 1) << 46) |
           (((x >> 18) & 1) << 45) |
           (((x >> 19) & 1) << 44) |
           (((x >> 20) & 1) << 43) |
           (((x >> 21) & 1) << 42) |
           (((x >> 22) & 1) << 41) |
           (((x >> 23) & 1) << 40) |
           (((x >> 24) & 1) << 39) |
           (((x >> 25) & 1) << 38) |
           (((x >> 26) & 1) << 37) |
           (((x >> 27) & 1) << 36) |
           (((x >> 28) & 1) << 35) |
           (((x >> 29) & 1) << 34) |
           (((x >> 30) & 1) << 33) |
           (((x >> 31) & 1) << 32) |
           (((x >> 32) & 1) << 31) |
           (((x >> 33) & 1) << 30) |
           (((x >> 34) & 1) << 29) |
           (((x >> 35) & 1) << 28) |
           (((x >> 36) & 1) << 27) |
           (((x >> 37) & 1) << 26) |
           (((x >> 38) & 1) << 25) |
           (((x >> 39) & 1) << 24) |
           (((x >> 40) & 1) << 23) |
           (((x >> 41) & 1) << 22) |
           (((x >> 42) & 1) << 21) |
           (((x >> 43) & 1) << 20) |
           (((x >> 44) & 1) << 19) |
           (((x >> 45) & 1) << 18) |
           (((x >> 46) & 1) << 17) |
           (((x >> 47) & 1) << 16) |
           (((x >> 48) & 1) << 15) |
           (((x >> 49) & 1) << 14) |
           (((x >> 50) & 1) << 13) |
           (((x >> 51) & 1) << 12) |
           (((x >> 52) & 1) << 11) |
           (((x >> 53) & 1) << 10) |
           (((x >> 54) & 1) << 9) |
           (((x >> 55) & 1) << 8) |
           (((x >> 56) & 1) << 7) |
           (((x >> 57) & 1) << 6) |
           (((x >> 58) & 1) << 5) |
           (((x >> 59) & 1) << 4) |
           (((x >> 60) & 1) << 3) |
           (((x >> 61) & 1) << 2) |
           (((x >> 62) & 1) << 1) |
           (((x >> 63) & 1) << 0);
}