用MySQL计算中位数最简单(希望不会太慢)的方法是什么?我已经使用AVG(x)来寻找平均值,但我很难找到一个简单的方法来计算中位数。现在,我将所有的行返回到PHP,进行排序,然后选择中间的行,但是肯定有一些简单的方法可以在一个MySQL查询中完成它。

示例数据:

id | val
--------
 1    4
 2    7
 3    2
 4    2
 5    9
 6    8
 7    3

对val排序得到2 2 3 4 7 8 9,因此中位数应该是4,而SELECT AVG(val) == 5。


当前回答

我没有将这个解决方案的性能与这里发布的其他答案进行比较,但我发现这个解决方案是最容易理解的,并且涵盖了计算中位数的全部数学公式。换句话说,这个解决方案对于偶数和奇数数据集足够健壮:

SELECT CASE 
-- odd-numbered data sets:
WHEN MOD(COUNT(*), 2) = 1 THEN (SELECT median.<value> AS median
FROM
(SELECT t1.<value>
  FROM (SELECT <value>, 
               ROW_NUMBER() OVER(ORDER BY <value>) AS rownum
          FROM <data>) t1,
       (SELECT COUNT(*) AS num_records FROM <data>) t2
 WHERE t1.rownum =(t2.num_records) / 2) as median)
-- even-numbered data sets:
ELSE (select (low_bound.<value> + up_bound.<value>) / 2 AS median
FROM
(SELECT t1.<value>
  FROM (SELECT <value>, 
               ROW_NUMBER() OVER(ORDER BY <value>) AS rownum
          FROM <data>) t1,
       (SELECT COUNT(*) AS num_records FROM <data>) t2
 WHERE t1.rownum =(t2.num_records - 1) / 2) as low_bound,
 (SELECT t1.<value>
  FROM (SELECT <value>, 
               ROW_NUMBER() OVER(ORDER BY <value>) AS rownum
          FROM station) t1,
       (SELECT COUNT(*) AS num_records FROM data) t2
 WHERE t1.rownum =(t2.num_records + 1) / 2) as up_bound)
END
FROM <data>

其他回答

MySQL文档中这一页的注释有以下建议:

-- (mostly) High Performance scaling MEDIAN function per group
-- Median defined in http://en.wikipedia.org/wiki/Median
--
-- by Peter Hlavac
-- 06.11.2008
--
-- Example Table:

DROP table if exists table_median;
CREATE TABLE table_median (id INTEGER(11),val INTEGER(11));
COMMIT;


INSERT INTO table_median (id, val) VALUES
(1, 7), (1, 4), (1, 5), (1, 1), (1, 8), (1, 3), (1, 6),
(2, 4),
(3, 5), (3, 2),
(4, 5), (4, 12), (4, 1), (4, 7);



-- Calculating the MEDIAN
SELECT @a := 0;
SELECT
id,
AVG(val) AS MEDIAN
FROM (
SELECT
id,
val
FROM (
SELECT
-- Create an index n for every id
@a := (@a + 1) mod o.c AS shifted_n,
IF(@a mod o.c=0, o.c, @a) AS n,
o.id,
o.val,
-- the number of elements for every id
o.c
FROM (
SELECT
t_o.id,
val,
c
FROM
table_median t_o INNER JOIN
(SELECT
id,
COUNT(1) AS c
FROM
table_median
GROUP BY
id
) t2
ON (t2.id = t_o.id)
ORDER BY
t_o.id,val
) o
) a
WHERE
IF(
-- if there is an even number of elements
-- take the lower and the upper median
-- and use AVG(lower,upper)
c MOD 2 = 0,
n = c DIV 2 OR n = (c DIV 2)+1,

-- if its an odd number of elements
-- take the first if its only one element
-- or take the one in the middle
IF(
c = 1,
n = 1,
n = c DIV 2 + 1
)
)
) a
GROUP BY
id;

-- Explanation:
-- The Statement creates a helper table like
--
-- n id val count
-- ----------------
-- 1, 1, 1, 7
-- 2, 1, 3, 7
-- 3, 1, 4, 7
-- 4, 1, 5, 7
-- 5, 1, 6, 7
-- 6, 1, 7, 7
-- 7, 1, 8, 7
--
-- 1, 2, 4, 1

-- 1, 3, 2, 2
-- 2, 3, 5, 2
--
-- 1, 4, 1, 4
-- 2, 4, 5, 4
-- 3, 4, 7, 4
-- 4, 4, 12, 4


-- from there we can select the n-th element on the position: count div 2 + 1 

安装和使用本mysql统计函数:http://www.xarg.org/2012/07/statistical-functions-in-mysql/

之后,计算中值就很简单了:

SELECT median(val) FROM data;

我有一个包含大约10亿行的数据库,我们需要它来确定集合中的年龄中位数。对十亿行进行排序是困难的,但如果你将可以找到的不同值(年龄范围从0到100)聚合在一起,你可以对这个列表进行排序,并使用一些算术魔术来找到你想要的任何百分位数,如下所示:

with rawData(count_value) as
(
    select p.YEAR_OF_BIRTH
        from dbo.PERSON p
),
overallStats (avg_value, stdev_value, min_value, max_value, total) as
(
  select avg(1.0 * count_value) as avg_value,
    stdev(count_value) as stdev_value,
    min(count_value) as min_value,
    max(count_value) as max_value,
    count(*) as total
  from rawData
),
aggData (count_value, total, accumulated) as
(
  select count_value, 
    count(*) as total, 
        SUM(count(*)) OVER (ORDER BY count_value ROWS UNBOUNDED PRECEDING) as accumulated
  FROM rawData
  group by count_value
)
select o.total as count_value,
  o.min_value,
    o.max_value,
    o.avg_value,
    o.stdev_value,
    MIN(case when d.accumulated >= .50 * o.total then count_value else o.max_value end) as median_value,
    MIN(case when d.accumulated >= .10 * o.total then count_value else o.max_value end) as p10_value,
    MIN(case when d.accumulated >= .25 * o.total then count_value else o.max_value end) as p25_value,
    MIN(case when d.accumulated >= .75 * o.total then count_value else o.max_value end) as p75_value,
    MIN(case when d.accumulated >= .90 * o.total then count_value else o.max_value end) as p90_value
from aggData d
cross apply overallStats o
GROUP BY o.total, o.min_value, o.max_value, o.avg_value, o.stdev_value
;

这个查询取决于你的db支持窗口函数(包括ROWS UNBOUNDED precede),但如果你没有,这是一个简单的事情,将aggData CTE与自身连接,并将所有先前的总数聚合到' cumulative '列,用于确定哪个值包含指定的预分词。上面的示例计算p10、p25、p50(中位数)、p75和p90。

屁股的

下面的SQL代码将帮助您使用用户定义的变量来计算MySQL中的中位数。

create table employees(salary int); insert into employees values(8); insert into employees values(23); insert into employees values(45); insert into employees values(123); insert into employees values(93); insert into employees values(2342); insert into employees values(2238); select * from employees; Select salary from employees order by salary; set @rowid=0; set @cnt=(select count(*) from employees); set @middle_no=ceil(@cnt/2); set @odd_even=null; select AVG(salary) from (select salary,@rowid:=@rowid+1 as rid, (CASE WHEN(mod(@cnt,2)=0) THEN @odd_even:=1 ELSE @odd_even:=0 END) as odd_even_status from employees order by salary) as tbl where tbl.rid=@middle_no or tbl.rid=(@middle_no+@odd_even);

如果你正在寻找详细的解释,请参考这个博客。

ORACLE的简单解决方案:

SELECT ROUND(MEDIAN(Lat_N), 4) FROM Station;

简单的解决方案,理解MySQL:

select case MOD(count(lat_n),2) 
when 1 then (select round(S.LAT_N,4) from station S where (select count(Lat_N) from station where Lat_N < S.LAT_N ) = (select count(Lat_N) from station where Lat_N > S.LAT_N))
else (select round(AVG(S.LAT_N),4) from station S where 1 = (select count(Lat_N) from station where Lat_N < S.LAT_N ) - (select count(Lat_N) from station where Lat_N > S.LAT_N))
end from station;

解释

STATION是表名。LAT_N是具有数值的列名

假设站表中有101条记录(奇数)。这意味着如果表以asc或desc排序,则中位数是第51条记录。

In above query for every S.LAT_N of S table I am creating two tables. One for number of LAT_N values less than S.LAT_N and another for number of LAT_N values greater than S.LAT_N. Later I am comparing these two tables and if they are matched then I am selecting that S.LAT_N value. When I check for 51st records there are 50 values less than 51st record and there 50 records greater than 51st record. As you see, there are 50 records in both tables. So this is our answer. For every other record there are different number of records in two tables created for comparison. So, only 51st record meets the condition.

现在假设站表中有100条记录(偶数)。这意味着如果表以asc或desc排序,则中位数是第50条和第51条记录的平均值。

Same as odd logic I am creating two tables. One for number of LAT_N values less than S.LAT_N and another for number of LAT_N values greater than S.LAT_N. Later I am comparing these two tables and if their difference is equal to 1 then I am selecting that S.LAT_N value and find the average. When I check for 50th records there are 49 values less than 50th record and there 51 records greater than 50th record. As you see, there is difference of 1 record in both tables. So this(50th record) is our 1st record for average. Similarly, When I check for 51st records there are 50 values less than 51st record and there 49 records greater than 51st record. As you see, there is difference of 1 record in both tables. So this(51st record) is our 2nd record for average. For every other record there are different number of records in two tables created for comparison. So, only 50th and 51st records meet the condition.