这个问题需要一个z分数或标准分数,它会考虑历史平均值,就像其他人提到的,但也会考虑历史数据的标准差,这使得它比仅仅使用平均值更可靠。
在你的例子中,z分数是通过以下公式计算的,其中趋势是一个比率,如观看次数/天。
z-score = ([current trend] - [average historic trends]) / [standard deviation of historic trends]
当使用z分数时,z分数越高或越低,趋势就越不正常,例如,如果z分数高度正,那么趋势就会异常上升,而如果z分数高度负,则趋势就会异常下降。因此,一旦你计算出所有候选趋势的z分数,最高的10个z分数将与最不正常增长的z分数有关。
有关z分数的更多信息,请参阅维基百科。
Code
from math import sqrt
def zscore(obs, pop):
# Size of population.
number = float(len(pop))
# Average population value.
avg = sum(pop) / number
# Standard deviation of population.
std = sqrt(sum(((c - avg) ** 2) for c in pop) / number)
# Zscore Calculation.
return (obs - avg) / std
样例输出
>>> zscore(12, [2, 4, 4, 4, 5, 5, 7, 9])
3.5
>>> zscore(20, [21, 22, 19, 18, 17, 22, 20, 20])
0.0739221270955
>>> zscore(20, [21, 22, 19, 18, 17, 22, 20, 20, 1, 2, 3, 1, 2, 1, 0, 1])
1.00303599234
>>> zscore(2, [21, 22, 19, 18, 17, 22, 20, 20, 1, 2, 3, 1, 2, 1, 0, 1])
-0.922793112954
>>> zscore(9, [1, 2, 0, 3, 1, 3, 1, 2, 9, 8, 7, 10, 9, 5, 2, 4, 1, 1, 0])
1.65291949506
笔记
You can use this method with a sliding window (i.e. last 30 days) if you wish not to take to much history into account, which will make short term trends more pronounced and can cut down on the processing time.
You could also use a z-score for values such as change in views from one day to next day to locate the abnormal values for increasing/decreasing views per day. This is like using the slope or derivative of the views per day graph.
If you keep track of the current size of the population, the current total of the population, and the current total of x^2 of the population, you don't need to recalculate these values, only update them and hence you only need to keep these values for the history, not each data value. The following code demonstrates this.
from math import sqrt
class zscore:
def __init__(self, pop = []):
self.number = float(len(pop))
self.total = sum(pop)
self.sqrTotal = sum(x ** 2 for x in pop)
def update(self, value):
self.number += 1.0
self.total += value
self.sqrTotal += value ** 2
def avg(self):
return self.total / self.number
def std(self):
return sqrt((self.sqrTotal / self.number) - self.avg() ** 2)
def score(self, obs):
return (obs - self.avg()) / self.std()
Using this method your work flow would be as follows. For each topic, tag, or page create a floating point field, for the total number of days, sum of views, and sum of views squared in your database. If you have historic data, initialize these fields using that data, otherwise initialize to zero. At the end of each day, calculate the z-score using the day's number of views against the historic data stored in the three database fields. The topics, tags, or pages, with the highest X z-scores are your X "hotest trends" of the day. Finally update each of the 3 fields with the day's value and repeat the process next day.
新成员
Normal z-scores as discussed above do not take into account the order of the data and hence the z-score for an observation of '1' or '9' would have the same magnitude against the sequence [1, 1, 1, 1, 9, 9, 9, 9]. Obviously for trend finding, the most current data should have more weight than older data and hence we want the '1' observation to have a larger magnitude score than the '9' observation. In order to achieve this I propose a floating average z-score. It should be clear that this method is NOT guaranteed to be statistically sound but should be useful for trend finding or similar. The main difference between the standard z-score and the floating average z-score is the use of a floating average to calculate the average population value and the average population value squared. See code for details:
Code
class fazscore:
def __init__(self, decay, pop = []):
self.sqrAvg = self.avg = 0
# The rate at which the historic data's effect will diminish.
self.decay = decay
for x in pop: self.update(x)
def update(self, value):
# Set initial averages to the first value in the sequence.
if self.avg == 0 and self.sqrAvg == 0:
self.avg = float(value)
self.sqrAvg = float((value ** 2))
# Calculate the average of the rest of the values using a
# floating average.
else:
self.avg = self.avg * self.decay + value * (1 - self.decay)
self.sqrAvg = self.sqrAvg * self.decay + (value ** 2) * (1 - self.decay)
return self
def std(self):
# Somewhat ad-hoc standard deviation calculation.
return sqrt(self.sqrAvg - self.avg ** 2)
def score(self, obs):
if self.std() == 0: return (obs - self.avg) * float("infinity")
else: return (obs - self.avg) / self.std()
样例输入输出
>>> fazscore(0.8, [1, 1, 1, 1, 1, 1, 9, 9, 9, 9, 9, 9]).score(1)
-1.67770595327
>>> fazscore(0.8, [1, 1, 1, 1, 1, 1, 9, 9, 9, 9, 9, 9]).score(9)
0.596052006642
>>> fazscore(0.9, [2, 4, 4, 4, 5, 5, 7, 9]).score(12)
3.46442230724
>>> fazscore(0.9, [2, 4, 4, 4, 5, 5, 7, 9]).score(22)
7.7773245459
>>> fazscore(0.9, [21, 22, 19, 18, 17, 22, 20, 20]).score(20)
-0.24633160155
>>> fazscore(0.9, [21, 22, 19, 18, 17, 22, 20, 20, 1, 2, 3, 1, 2, 1, 0, 1]).score(20)
1.1069362749
>>> fazscore(0.9, [21, 22, 19, 18, 17, 22, 20, 20, 1, 2, 3, 1, 2, 1, 0, 1]).score(2)
-0.786764452966
>>> fazscore(0.9, [1, 2, 0, 3, 1, 3, 1, 2, 9, 8, 7, 10, 9, 5, 2, 4, 1, 1, 0]).score(9)
1.82262469243
>>> fazscore(0.8, [40] * 200).score(1)
-inf
更新
正如David Kemp所正确指出的那样,如果给定一系列常数值,然后要求一个与其他值不同的观测值的zscore,那么结果应该是非零的。事实上,返回的值应该是无穷大。我改变了这条线,
if self.std() == 0: return 0
to:
if self.std() == 0: return (obs - self.avg) * float("infinity")
这一更改反映在fazscore解决方案代码中。如果你不想处理无穷大的值,一个可以接受的解决方案是将这一行改为:
if self.std() == 0: return obs - self.avg