我使用了以下ggplot命令:

ggplot(survey, aes(x = age)) + stat_bin(aes(n = nrow(h3), y = ..count.. / n), binwidth = 10)
  + scale_y_continuous(formatter = "percent", breaks = c(0, 0.1, 0.2))
  + facet_grid(hospital ~ .)
  + theme(panel.background = theme_blank())

生产

然而,我想将facet标签更改为更短的内容(如Hosp 1, Hosp 2…),因为它们现在太长了,看起来很局促(增加图形的高度不是一个选项,它将占用文档中的太多空间)。我查看了facet_grid帮助页面,但不知道如何操作。


当前回答

这对我很有用。

定义一个因素:

hospitals.factor<- factor( c("H0","H1","H2") )

在ggplot()中使用:

facet_grid( hospitals.factor[hospital] ~ . )

其他回答

我有另一种方法可以在不改变底层数据的情况下实现相同的目标:

ggplot(transform(survey, survey = factor(survey,
        labels = c("Hosp 1", "Hosp 2", "Hosp 3", "Hosp 4"))), aes(x = age)) +
  stat_bin(aes(n = nrow(h3),y=..count../n), binwidth = 10) +
  scale_y_continuous(formatter = "percent", breaks = c(0, 0.1, 0.2)) +
  facet_grid(hospital ~ .) +
  opts(panel.background = theme_blank())

我上面所做的是改变原始数据帧中因子的标签,这是与原始代码相比的唯一不同之处。

下面是另一个解决方案,它遵循@naught101给出的解决方案的精神,但更简单,也没有在ggplot2的最新版本上抛出警告。

基本上,首先创建一个命名字符向量

hospital_names <- c(
                    `Hospital#1` = "Some Hospital",
                    `Hospital#2` = "Another Hospital",
                    `Hospital#3` = "Hospital Number 3",
                    `Hospital#4` = "The Other Hospital"
                    )

然后将它用作标签器,只需修改@naught101给出的最后一行代码

... + facet_grid(hospital ~ ., labeller = as_labeller(hospital_names))

这对我很有用。

定义一个因素:

hospitals.factor<- factor( c("H0","H1","H2") )

在ggplot()中使用:

facet_grid( hospitals.factor[hospital] ~ . )

在挣扎了一段时间后,我发现我们可以使用fct_relevel()和fct_recode()从forcats结合来改变facet的顺序以及修复facet标签。我不确定它是否被设计支持,但它确实有效!看看下面的图表:

library(tidyverse)

before <- mpg %>%
  ggplot(aes(displ, hwy)) + 
  geom_point() +
  facet_wrap(~class)
before

after <- mpg %>%
  ggplot(aes(displ, hwy)) + 
  geom_point() + 
  facet_wrap(
    vars(
      # Change factor level name
      fct_recode(class, "motorbike" = "2seater") %>% 
        # Change factor level order
        fct_relevel("compact")
    )
  )
after

由reprex包于2020-02-16创建(v0.3.0)

你试过改变医院载体的具体水平吗?

levels(survey$hospital)[levels(survey$hospital) == "Hospital #1"] <- "Hosp 1"
levels(survey$hospital)[levels(survey$hospital) == "Hospital #2"] <- "Hosp 2"
levels(survey$hospital)[levels(survey$hospital) == "Hospital #3"] <- "Hosp 3"