为了缓存目的,我需要从字典中存在的GET参数生成一个缓存键。
目前,我正在使用sha1(repr(sorted(my_dict.items()))) (sha1()是一个内部使用hashlib的方便方法),但我很好奇是否有更好的方法。
为了缓存目的,我需要从字典中存在的GET参数生成一个缓存键。
目前,我正在使用sha1(repr(sorted(my_dict.items()))) (sha1()是一个内部使用hashlib的方便方法),但我很好奇是否有更好的方法。
当前回答
我是这样做的:
hash(str(my_dict))
其他回答
更新自2013年回复…
以上答案在我看来都不可靠。原因是使用了items()。据我所知,这是一个依赖于机器的顺序。
这个怎么样?
import hashlib
def dict_hash(the_dict, *ignore):
if ignore: # Sometimes you don't care about some items
interesting = the_dict.copy()
for item in ignore:
if item in interesting:
interesting.pop(item)
the_dict = interesting
result = hashlib.sha1(
'%s' % sorted(the_dict.items())
).hexdigest()
return result
下面的代码避免使用Python hash()函数,因为它不会在重新启动Python时提供一致的散列(参见Python 3.3中的散列函数在会话之间返回不同的结果)。make_hashable()将对象转换为嵌套的元组,make_hash_sha256()也将repr()转换为base64编码的SHA256散列。
import hashlib
import base64
def make_hash_sha256(o):
hasher = hashlib.sha256()
hasher.update(repr(make_hashable(o)).encode())
return base64.b64encode(hasher.digest()).decode()
def make_hashable(o):
if isinstance(o, (tuple, list)):
return tuple((make_hashable(e) for e in o))
if isinstance(o, dict):
return tuple(sorted((k,make_hashable(v)) for k,v in o.items()))
if isinstance(o, (set, frozenset)):
return tuple(sorted(make_hashable(e) for e in o))
return o
o = dict(x=1,b=2,c=[3,4,5],d={6,7})
print(make_hashable(o))
# (('b', 2), ('c', (3, 4, 5)), ('d', (6, 7)), ('x', 1))
print(make_hash_sha256(o))
# fyt/gK6D24H9Ugexw+g3lbqnKZ0JAcgtNW+rXIDeU2Y=
虽然hash(frozenset(x.items())和hash(tuple(sorted(x.items()))可以工作,但分配和复制所有键-值对需要做很多工作。哈希函数应该避免大量的内存分配。
一点数学知识能帮上忙。大多数哈希函数的问题是他们认为顺序很重要。要对无序结构进行哈希,需要一个交换操作。乘法运算不能很好地工作,因为任何元素哈希到0都意味着整个乘积为0。位&和|倾向于所有的0或1。有两个很好的候选:加法和异或。
from functools import reduce
from operator import xor
class hashable(dict):
def __hash__(self):
return reduce(xor, map(hash, self.items()), 0)
# Alternative
def __hash__(self):
return sum(map(hash, self.items()))
一点:xor可以工作,部分原因是dict保证键是唯一的。sum可以工作,因为Python会按位截断结果。
如果你想散列一个多集,sum是更可取的。对于xor, {a}将哈希到与{a, a, a}相同的值,因为x ^ x ^ x = x。
如果您确实需要SHA提供的保证,那么这并不适合您。但是在集合中使用字典,这将很好;Python容器对某些冲突具有弹性,底层哈希函数非常好。
我是这样做的:
hash(str(my_dict))
您可以使用地图库来做到这一点。具体来说,地图。FrozenMap
import maps
fm = maps.FrozenMap(my_dict)
hash(fm)
要安装地图,只需执行:
pip install maps
它也处理嵌套的dict大小写:
import maps
fm = maps.FrozenMap.recurse(my_dict)
hash(fm)
免责声明:我是地图库的作者。