为了缓存目的,我需要从字典中存在的GET参数生成一个缓存键。
目前,我正在使用sha1(repr(sorted(my_dict.items()))) (sha1()是一个内部使用hashlib的方便方法),但我很好奇是否有更好的方法。
为了缓存目的,我需要从字典中存在的GET参数生成一个缓存键。
目前,我正在使用sha1(repr(sorted(my_dict.items()))) (sha1()是一个内部使用hashlib的方便方法),但我很好奇是否有更好的方法。
当前回答
更新自2013年回复…
以上答案在我看来都不可靠。原因是使用了items()。据我所知,这是一个依赖于机器的顺序。
这个怎么样?
import hashlib
def dict_hash(the_dict, *ignore):
if ignore: # Sometimes you don't care about some items
interesting = the_dict.copy()
for item in ignore:
if item in interesting:
interesting.pop(item)
the_dict = interesting
result = hashlib.sha1(
'%s' % sorted(the_dict.items())
).hexdigest()
return result
其他回答
您可以使用第三方frozendict模块来冻结dict并使其可哈希。
from frozendict import frozendict
my_dict = frozendict(my_dict)
为了处理嵌套对象,你可以使用:
import collections.abc
def make_hashable(x):
if isinstance(x, collections.abc.Hashable):
return x
elif isinstance(x, collections.abc.Sequence):
return tuple(make_hashable(xi) for xi in x)
elif isinstance(x, collections.abc.Set):
return frozenset(make_hashable(xi) for xi in x)
elif isinstance(x, collections.abc.Mapping):
return frozendict({k: make_hashable(v) for k, v in x.items()})
else:
raise TypeError("Don't know how to make {} objects hashable".format(type(x).__name__))
如果你想支持更多类型,请使用functools。singledispatch (Python 3.7):
@functools.singledispatch
def make_hashable(x):
raise TypeError("Don't know how to make {} objects hashable".format(type(x).__name__))
@make_hashable.register
def _(x: collections.abc.Hashable):
return x
@make_hashable.register
def _(x: collections.abc.Sequence):
return tuple(make_hashable(xi) for xi in x)
@make_hashable.register
def _(x: collections.abc.Set):
return frozenset(make_hashable(xi) for xi in x)
@make_hashable.register
def _(x: collections.abc.Mapping):
return frozendict({k: make_hashable(v) for k, v in x.items()})
# add your own types here
这里有一个更清晰的解决方案。
def freeze(o):
if isinstance(o,dict):
return frozenset({ k:freeze(v) for k,v in o.items()}.items())
if isinstance(o,list):
return tuple([freeze(v) for v in o])
return o
def make_hash(o):
"""
makes a hash out of anything that contains only list,dict and hashable types including string and numeric types
"""
return hash(freeze(o))
下面的代码避免使用Python hash()函数,因为它不会在重新启动Python时提供一致的散列(参见Python 3.3中的散列函数在会话之间返回不同的结果)。make_hashable()将对象转换为嵌套的元组,make_hash_sha256()也将repr()转换为base64编码的SHA256散列。
import hashlib
import base64
def make_hash_sha256(o):
hasher = hashlib.sha256()
hasher.update(repr(make_hashable(o)).encode())
return base64.b64encode(hasher.digest()).decode()
def make_hashable(o):
if isinstance(o, (tuple, list)):
return tuple((make_hashable(e) for e in o))
if isinstance(o, dict):
return tuple(sorted((k,make_hashable(v)) for k,v in o.items()))
if isinstance(o, (set, frozenset)):
return tuple(sorted(make_hashable(e) for e in o))
return o
o = dict(x=1,b=2,c=[3,4,5],d={6,7})
print(make_hashable(o))
# (('b', 2), ('c', (3, 4, 5)), ('d', (6, 7)), ('x', 1))
print(make_hash_sha256(o))
# fyt/gK6D24H9Ugexw+g3lbqnKZ0JAcgtNW+rXIDeU2Y=
更新自2013年回复…
以上答案在我看来都不可靠。原因是使用了items()。据我所知,这是一个依赖于机器的顺序。
这个怎么样?
import hashlib
def dict_hash(the_dict, *ignore):
if ignore: # Sometimes you don't care about some items
interesting = the_dict.copy()
for item in ignore:
if item in interesting:
interesting.pop(item)
the_dict = interesting
result = hashlib.sha1(
'%s' % sorted(the_dict.items())
).hexdigest()
return result
我是这样做的:
hash(str(my_dict))