目标是创建一个行为类似db结果集的模拟类。

例如,如果一个数据库查询返回,使用dict表达式,{'ab':100, 'cd':200},那么我想看到:

>>> dummy.ab
100

一开始我想也许我可以这样做:

ks = ['ab', 'cd']
vs = [12, 34]
class C(dict):
    def __init__(self, ks, vs):
        for i, k in enumerate(ks):
            self[k] = vs[i]
            setattr(self, k, property(lambda x: vs[i], self.fn_readyonly))

    def fn_readonly(self, v)
        raise "It is ready only"

if __name__ == "__main__":
    c = C(ks, vs)
    print c.ab

但是cab返回一个属性对象。

用k = property(lambda x: vs[i])替换setattr行根本没有用。

那么,在运行时创建实例属性的正确方法是什么呢?

附注:我知道在如何使用__getattribute__方法中提出了一个替代方案?


当前回答

这似乎是可行的(但见下文):

class data(dict,object):
    def __init__(self,*args,**argd):
        dict.__init__(self,*args,**argd)
        self.__dict__.update(self)
    def __setattr__(self,name,value):
        raise AttributeError,"Attribute '%s' of '%s' object cannot be set"%(name,self.__class__.__name__)
    def __delattr__(self,name):
        raise AttributeError,"Attribute '%s' of '%s' object cannot be deleted"%(name,self.__class__.__name__)

如果您需要更复杂的行为,请随意编辑您的答案。

edit

对于大型数据集,以下方法可能更节省内存:

class data(dict,object):
    def __init__(self,*args,**argd):
        dict.__init__(self,*args,**argd)
    def __getattr__(self,name):
        return self[name]
    def __setattr__(self,name,value):
        raise AttributeError,"Attribute '%s' of '%s' object cannot be set"%(name,self.__class__.__name__)
    def __delattr__(self,name):
        raise AttributeError,"Attribute '%s' of '%s' object cannot be deleted"%(name,self.__class__.__name__)

其他回答

动态附加属性的唯一方法是用新属性创建一个新类及其实例。

class Holder: p = property(lambda x: vs[i], self.fn_readonly)
setattr(self, k, Holder().p)

我在Stack Overflow的这篇文章中问了一个类似的问题,以创建一个创建简单类型的类工厂。结果就是这个答案,它有一个类工厂的工作版本。 以下是答案的一小段:

def Struct(*args, **kwargs):
    def init(self, *iargs, **ikwargs):
        for k,v in kwargs.items():
            setattr(self, k, v)
        for i in range(len(iargs)):
            setattr(self, args[i], iargs[i])
        for k,v in ikwargs.items():
            setattr(self, k, v)

    name = kwargs.pop("name", "MyStruct")
    kwargs.update(dict((k, None) for k in args))
    return type(name, (object,), {'__init__': init, '__slots__': kwargs.keys()})

>>> Person = Struct('fname', 'age')
>>> person1 = Person('Kevin', 25)
>>> person2 = Person(age=42, fname='Terry')
>>> person1.age += 10
>>> person2.age -= 10
>>> person1.fname, person1.age, person2.fname, person2.age
('Kevin', 35, 'Terry', 32)
>>>

你可以使用这个的一些变化来创建默认值,这是你的目标(在这个问题中也有一个答案)。

我想我应该扩展这个答案,现在我长大了,更聪明了,知道发生了什么。迟到总比不到好。

可以动态地向类添加属性。但这就是问题所在:你必须把它添加到类中。

>>> class Foo(object):
...     pass
... 
>>> foo = Foo()
>>> foo.a = 3
>>> Foo.b = property(lambda self: self.a + 1)
>>> foo.b
4

属性实际上是描述符的简单实现。它是一个对象,为给定类的给定属性提供自定义处理。有点像从__getattribute__中分解出一个巨大的if树。

When I ask for foo.b in the example above, Python sees that the b defined on the class implements the descriptor protocol—which just means it's an object with a __get__, __set__, or __delete__ method. The descriptor claims responsibility for handling that attribute, so Python calls Foo.b.__get__(foo, Foo), and the return value is passed back to you as the value of the attribute. In the case of property, each of these methods just calls the fget, fset, or fdel you passed to the property constructor.

描述符实际上是Python暴露其整个OO实现管道的方式。事实上,还有一种比属性更常见的描述符。

>>> class Foo(object):
...     def bar(self):
...         pass
... 
>>> Foo().bar
<bound method Foo.bar of <__main__.Foo object at 0x7f2a439d5dd0>>
>>> Foo().bar.__get__
<method-wrapper '__get__' of instancemethod object at 0x7f2a43a8a5a0>

简单的方法只是另一种描述符。它的__get__将调用实例作为第一个参数;实际上,它是这样做的:

def __get__(self, instance, owner):
    return functools.partial(self.function, instance)

不管怎样,我怀疑这就是为什么描述符只在类上起作用:它们是首先为类提供动力的东西的形式化。它们甚至是规则的例外:您可以明显地为类分配描述符,而类本身就是类型的实例!事实上,我试着读Foo。Bar仍然调用property.__get__;描述符在作为类属性访问时返回自己,这只是一种习惯。

我认为几乎所有Python的OO系统都可以用Python来表达,这非常酷。:)

哦,如果你感兴趣的话,我之前写过一篇关于描述符的冗长博文。

如果需求是基于某些实例属性动态生成属性,那么下面的代码可能会有用:

import random  

class Foo:
    def __init__(self, prop_names: List[str], should_property_be_zero: bool = False) -> None:
        self.prop_names = prop_names
        self.should_property_be_zero = should_property_be_zero
        
    def create_properties(self):
        for name in self.prop_names:
            setattr(self.__class__, name, property(fget=lambda self: 0 if self.should_property_be_zero else random.randint(1, 100)))

需要注意的重要一点是使用setattr(self。__class__进行名称,…),而不是setattr(自我、名称…)

使用的例子:

In [261]: prop_names = ['a', 'b']

In [262]: ff = Foo(prop_names=prop_names, should_property_be_zero=False)

In [263]: ff.create_properties()

In [264]: ff.a
Out[264]: 10

In [265]: ff.b
Out[265]: 37

In [266]: ft = Foo(prop_names=prop_names, should_property_be_zero=True)

In [267]: ft.create_properties()

In [268]: ft.a
Out[268]: 0

In [269]: ft.b
Out[269]: 0

设置属性将引发AttributeError:不能按预期设置属性:

In [270]: ff.a = 5
---------------------------------------------------------------------------
AttributeError                            Traceback (most recent call last)
<ipython-input-270-5f9cad5b617d> in <module>
----> 1 ff.a = 5

AttributeError: can't set attribute

In [271]: ft.a = 5
---------------------------------------------------------------------------
AttributeError                            Traceback (most recent call last)
<ipython-input-271-65e7b8e25b67> in <module>
----> 1 ft.a = 5

AttributeError: can't set attribute

为了回答你的问题,你需要一个来自dict的只读属性作为不可变数据源:

目标是创建一个行为类似db结果集的模拟类。 例如,如果一个数据库查询返回一个dict表达式, {'ab':100, 'cd':200},那么我将看到 > > > dummy.ab One hundred.

我将演示如何使用collections模块中的namedtuple来实现这一点:

import collections

data = {'ab':100, 'cd':200}

def maketuple(d):
    '''given a dict, return a namedtuple'''
    Tup = collections.namedtuple('TupName', d.keys()) # iterkeys in Python2
    return Tup(**d)

dummy = maketuple(data)
dummy.ab

返回100