我一直在使用TensorFlow中矩阵乘法的介绍性示例。

matrix1 = tf.constant([[3., 3.]])
matrix2 = tf.constant([[2.],[2.]])
product = tf.matmul(matrix1, matrix2)

当我打印乘积时,它显示为一个张量对象:

<tensorflow.python.framework.ops.Tensor object at 0x10470fcd0>

但是我怎么知道产品的价值呢?

下面的方法不起作用:

print product
Tensor("MatMul:0", shape=TensorShape([Dimension(1), Dimension(1)]), dtype=float32)

我知道图在会话上运行,但是没有任何方法可以检查张量对象的输出而不在会话中运行图吗?


当前回答

Tf.keras.backend.eval用于计算小表达式。

tf.keras.backend.eval(op)

TF - 1。x和TF 2.0兼容。


最小可验证示例

from tensorflow.keras.backend import eval

m1 = tf.constant([[3., 3.]])
m2 = tf.constant([[2.],[2.]])

eval(tf.matmul(m1, m2))
# array([[12.]], dtype=float32)

这很有用,因为您不必显式地创建Session或InteractiveSession。

其他回答

我认为你需要掌握一些基本知识。通过上面的例子,你已经创建了张量(多维数组)。但是要让张量流真正工作,你必须启动一个“会话”,并在会话中运行你的“操作”。注意单词“session”和“operation”。 要使用张量流,你需要知道4件事:

张量 操作 会话 图

现在,从你写出来的东西中,你已经给出了张量和操作,但你没有运行会话,也没有图。张量(图的边)在图中流动,并由操作(图的节点)操作。有默认的图形,但你可以在会话中初始化你的。

当你说打印时,你只访问你定义的变量或常数的形状。

所以你可以看到你错过了什么:

 with tf.Session() as sess:     
           print(sess.run(product))
           print (product.eval())

希望能有所帮助!

在Tensorflow V2中,使用:tf.keras.backend打印张量的值。print_tensor (x,消息= ")

我发现即使在阅读了所有的答案之后,我也不容易理解需要什么,直到我执行了这个。TensofFlow对我来说也是新的。

def printtest():
x = tf.constant([1.0, 3.0])
x = tf.Print(x,[x],message="Test")
init = (tf.global_variables_initializer(), tf.local_variables_initializer())
b = tf.add(x, x)
with tf.Session() as sess:
    sess.run(init)
    print(sess.run(b))
    sess.close()

但是您仍然可能需要执行会话返回的值。

def printtest():
    x = tf.constant([100.0])
    x = tf.Print(x,[x],message="Test")
    init = (tf.global_variables_initializer(), tf.local_variables_initializer())
    b = tf.add(x, x)
    with tf.Session() as sess:
        sess.run(init)
        c = sess.run(b)
        print(c)
        sess.close()

不,你不能在不运行图(执行session.run())的情况下看到张量的内容。你能看到的只有:

张量的维数(但我假设对TF的操作列表计算它并不难) 用于生成张量(transpose_1:0, random_uniform:0)的操作类型。 张量中元素的类型(float32)

我没有在文档中找到这一点,但我相信变量的值(和一些常数在赋值时没有计算)。


看看这个例子:

import tensorflow as tf
from datetime import datetime
dim = 7000

第一个例子中,我刚刚启动了一个常数的随机数张量运行的时间几乎是相同的不管dim (0:00:00.003261)

startTime = datetime.now()
m1 = tf.truncated_normal([dim, dim], mean=0.0, stddev=0.02, dtype=tf.float32, seed=1)
print datetime.now() - startTime

在第二种情况中,实际计算了常数并分配了值,时间显然取决于dim (0:00:01.244642)

startTime = datetime.now()
m1 = tf.truncated_normal([dim, dim], mean=0.0, stddev=0.02, dtype=tf.float32, seed=1)
sess = tf.Session()
sess.run(m1)
print datetime.now() - startTime

你可以通过计算一些东西来让它更清楚(d = tf. matrix_行列式(m1),记住时间将以O(dim^2.8)为单位运行)

附注:我在文档中找到了解释:

张量对象是运算结果的符号句柄, 但是实际上并不保存操作输出的值。

重申其他人所说的,不运行图表是不可能检查值的。

下面是一个简单的代码片段,供寻找打印值的简单示例的人使用。代码可以在ipython notebook中执行,无需任何修改

import tensorflow as tf

#define a variable to hold normal random values 
normal_rv = tf.Variable( tf.truncated_normal([2,3],stddev = 0.1))

#initialize the variable
init_op = tf.initialize_all_variables()

#run the graph
with tf.Session() as sess:
    sess.run(init_op) #execute init_op
    #print the random values that we sample
    print (sess.run(normal_rv))

输出:

[[-0.16702934  0.07173464 -0.04512421]
 [-0.02265321  0.06509651 -0.01419079]]