我一直在使用TensorFlow中矩阵乘法的介绍性示例。

matrix1 = tf.constant([[3., 3.]])
matrix2 = tf.constant([[2.],[2.]])
product = tf.matmul(matrix1, matrix2)

当我打印乘积时,它显示为一个张量对象:

<tensorflow.python.framework.ops.Tensor object at 0x10470fcd0>

但是我怎么知道产品的价值呢?

下面的方法不起作用:

print product
Tensor("MatMul:0", shape=TensorShape([Dimension(1), Dimension(1)]), dtype=float32)

我知道图在会话上运行,但是没有任何方法可以检查张量对象的输出而不在会话中运行图吗?


当前回答

我发现即使在阅读了所有的答案之后,我也不容易理解需要什么,直到我执行了这个。TensofFlow对我来说也是新的。

def printtest():
x = tf.constant([1.0, 3.0])
x = tf.Print(x,[x],message="Test")
init = (tf.global_variables_initializer(), tf.local_variables_initializer())
b = tf.add(x, x)
with tf.Session() as sess:
    sess.run(init)
    print(sess.run(b))
    sess.close()

但是您仍然可能需要执行会话返回的值。

def printtest():
    x = tf.constant([100.0])
    x = tf.Print(x,[x],message="Test")
    init = (tf.global_variables_initializer(), tf.local_variables_initializer())
    b = tf.add(x, x)
    with tf.Session() as sess:
        sess.run(init)
        c = sess.run(b)
        print(c)
        sess.close()

其他回答

基于上面的答案,使用特定的代码片段,您可以像这样打印产品:

import tensorflow as tf
#Initialize the session
sess = tf.InteractiveSession()

matrix1 = tf.constant([[3., 3.]])
matrix2 = tf.constant([[2.],[2.]])
product = tf.matmul(matrix1, matrix2)

#print the product
print(product.eval())

#close the session to release resources
sess.close()

我发现即使在阅读了所有的答案之后,我也不容易理解需要什么,直到我执行了这个。TensofFlow对我来说也是新的。

def printtest():
x = tf.constant([1.0, 3.0])
x = tf.Print(x,[x],message="Test")
init = (tf.global_variables_initializer(), tf.local_variables_initializer())
b = tf.add(x, x)
with tf.Session() as sess:
    sess.run(init)
    print(sess.run(b))
    sess.close()

但是您仍然可能需要执行会话返回的值。

def printtest():
    x = tf.constant([100.0])
    x = tf.Print(x,[x],message="Test")
    init = (tf.global_variables_initializer(), tf.local_variables_initializer())
    b = tf.add(x, x)
    with tf.Session() as sess:
        sess.run(init)
        c = sess.run(b)
        print(c)
        sess.close()

你可以打印出session中的张量值,如下所示:

import tensorflow as tf

a = tf.constant([1, 1.5, 2.5], dtype=tf.float32)
b = tf.constant([1, -2, 3], dtype=tf.float32)
c = a * b

with tf.Session() as sess:
    result = c.eval()
   
print(result)

我不确定我是否遗漏了这里,但我认为最简单和最好的方法是使用tf.keras.backend。get_value API。

print(product)
>>tf.Tensor([[12.]], shape=(1, 1), dtype=float32)
print(tf.keras.backend.get_value(product))
>>[[12.]]

启用热切执行,这是在1.10版之后tensorflow中引入的。 它很容易使用。

# Initialize session
import tensorflow as tf
tf.enable_eager_execution()


# Some tensor we want to print the value of
a = tf.constant([1.0, 3.0])

print(a)