我一直在使用TensorFlow中矩阵乘法的介绍性示例。
matrix1 = tf.constant([[3., 3.]])
matrix2 = tf.constant([[2.],[2.]])
product = tf.matmul(matrix1, matrix2)
当我打印乘积时,它显示为一个张量对象:
<tensorflow.python.framework.ops.Tensor object at 0x10470fcd0>
但是我怎么知道产品的价值呢?
下面的方法不起作用:
print product
Tensor("MatMul:0", shape=TensorShape([Dimension(1), Dimension(1)]), dtype=float32)
我知道图在会话上运行,但是没有任何方法可以检查张量对象的输出而不在会话中运行图吗?
基本上,在tensorflow中,当你创建任何类型的张量时,它们都会被创建并存储在里面,只有当你运行tensorflow会话时才能访问。假设你已经创建了一个常数张量
c = tf.constant ([(1.0, 2.0, 3.0), (4.0, 5.0, 6.0)))
不运行会话,您可以得到
—op:操作。计算这个张量的运算。
—value_index: int类型。生成这个张量的操作端点的索引。
—dtype: dtype类型。存储在这个张量中的元素类型。
为了得到这些值,你可以用你需要的张量运行一个会话:
with tf.Session() as sess:
print(sess.run(c))
sess.close()
输出将是这样的:
array([[1st, 2nd, 3rd],
[4th, 5th, 6th]], dtype=float32)
求一个Tensor对象的实际值最简单的方法是将它传递给session .run()方法,或者当你有一个默认会话(即在with tf.Session():块中,或见下文)时调用Tensor.eval()。一般来说[B],如果不在会话中运行一些代码,就不能打印张量的值。
如果你正在试验编程模型,想要一种简单的方法来求张量,tf。InteractiveSession允许你在程序开始时打开一个会话,然后将该会话用于所有的Tensor.eval()(和Operation.run())调用。这在交互设置中(比如shell或IPython笔记本)更容易,因为到处传递Session对象很乏味。例如,以下工作在Jupyter笔记本:
with tf.Session() as sess: print(product.eval())
对于如此小的表达式来说,这可能看起来很愚蠢,但这是Tensorflow 1中的关键思想之一。x是延迟执行:构建一个大而复杂的表达式非常便宜,当你想计算它时,后端(你连接到一个会话)能够更有效地调度它的执行(例如并行执行独立的部分并使用gpu)。
[A]:要打印一个张量的值而不返回到你的Python程序,你可以使用tf.print()操作符,正如Andrzej在另一个答案中建议的那样。根据官方文件:
为了确保操作符运行,用户需要将生成的op传递给tf. compat_1 . session的run方法,或者通过指定tf. compat_1 .control_dependencies([print_op])将op作为已执行操作的控制依赖项,输出到标准输出。
还要注意:
在Jupyter笔记本和colabs中,tf。打印打印到笔记本单元格输出。它不会写入笔记本内核的控制台日志。
[B]:你可以使用tf.get_static_value()函数来获得给定张量的常数值,如果它的值是可以有效计算的。
请注意,tf.Print()将改变张量名称。
如果你想要打印的张量是一个占位符,那么向它输入数据将会失败,因为在输入过程中找不到原始的名称。
例如:
import tensorflow as tf
tens = tf.placeholder(tf.float32,[None,2],name="placeholder")
print(eval("tens"))
tens = tf.Print(tens,[tens, tf.shape(tens)],summarize=10,message="tens:")
print(eval("tens"))
res = tens + tens
sess = tf.Session()
sess.run(tf.global_variables_initializer())
print(sess.run(res))
输出是:
python test.py
Tensor("placeholder:0", shape=(?, 2), dtype=float32)
Tensor("Print:0", shape=(?, 2), dtype=float32)
Traceback (most recent call last):
[...]
InvalidArgumentError (see above for traceback): You must feed a value for placeholder tensor 'placeholder' with dtype float
使用https://www.tensorflow.org/api_docs/python/tf/print中提供的提示,我使用log_d函数打印格式化的字符串。
import tensorflow as tf
def log_d(fmt, *args):
op = tf.py_func(func=lambda fmt_, *args_: print(fmt%(*args_,)),
inp=[fmt]+[*args], Tout=[])
return tf.control_dependencies([op])
# actual code starts now...
matrix1 = tf.constant([[3., 3.]])
matrix2 = tf.constant([[2.],[2.]])
product = tf.matmul(matrix1, matrix2)
with log_d('MAT1: %s, MAT2: %s', matrix1, matrix2): # this will print the log line
product = tf.matmul(matrix1, matrix2)
with tf.Session() as sess:
sess.run(product)