是否有一种简单的方法可以用列表理解来扁平化一个可迭代对象列表,或者如果没有,你们都认为什么是扁平化这样一个浅列表的最好方法,平衡性能和可读性?

我尝试用一个嵌套的列表理解来扁平化这样一个列表,就像这样:

[image for image in menuitem for menuitem in list_of_menuitems]

但是我遇到了NameError的麻烦,因为名字‘menuitem’没有定义。在google和Stack Overflow上搜索之后,我用一个reduce语句得到了想要的结果:

reduce(list.__add__, map(lambda x: list(x), list_of_menuitems))

但是这个方法是相当不可读的,因为我需要调用list(x)因为x是Django QuerySet对象。

结论:

感谢每个为这个问题做出贡献的人。以下是我所学到的一份总结。我也把它变成了一个社区维基,以防其他人想要添加或纠正这些观察。

我原来的reduce语句是多余的,最好这样写:

>>> reduce(list.__add__, (list(mi) for mi in list_of_menuitems))

这是嵌套列表理解的正确语法(聪明的总结dF!)

>>> [image for mi in list_of_menuitems for image in mi]

但这两种方法都不如使用itertools.chain有效:

>>> from itertools import chain
>>> list(chain(*list_of_menuitems))

正如@cdleary所指出的那样,使用chain.from_iterable来避免*操作符魔法可能是更好的风格,就像这样:

>>> chain = itertools.chain.from_iterable([[1,2],[3],[5,89],[],[6]])
>>> print(list(chain))
>>> [1, 2, 3, 5, 89, 6]

当前回答

Pylab提供了一个flatten: 链接到numpy flatten

其他回答

性能结果。修改。

import itertools
def itertools_flatten( aList ):
    return list( itertools.chain(*aList) )

from operator import add
def reduce_flatten1( aList ):
    return reduce(add, map(lambda x: list(x), [mi for mi in aList]))

def reduce_flatten2( aList ):
    return reduce(list.__add__, map(list, aList))

def comprehension_flatten( aList ):
    return list(y for x in aList for y in x)

我将一个包含30个道具的2级列表平铺了1000次

itertools_flatten     0.00554
comprehension_flatten 0.00815
reduce_flatten2       0.01103
reduce_flatten1       0.01404

减少总是一个糟糕的选择。

如果您只是希望迭代一个扁平的数据结构版本,并且不需要可索引序列,请考虑itertools。连锁店和公司。

>>> list_of_menuitems = [['image00', 'image01'], ['image10'], []]
>>> import itertools
>>> chain = itertools.chain(*list_of_menuitems)
>>> print(list(chain))
['image00', 'image01', 'image10']

它可以在任何可迭代的东西上工作,其中应该包括Django的可迭代QuerySets,它似乎是你在问题中使用的。

编辑:无论如何,这可能和reduce一样好,因为reduce将有相同的开销将项复制到正在扩展的列表中。如果你在最后运行list(Chain), Chain只会引起这种(相同的)开销。

Meta-Edit:实际上,它的开销比问题提出的解决方案要少,因为当您使用临时列表扩展原始列表时,会丢弃您创建的临时列表。

编辑:正如J.F.塞巴斯蒂安说itertools.chain.from_iterable避免解包,你应该使用它来避免*魔术,但timeit应用程序显示可以忽略的性能差异。

Sum (list_of_lists,[])将使它变平。

l = [['image00', 'image01'], ['image10'], []]
print sum(l,[]) # prints ['image00', 'image01', 'image10']

似乎与operator.add!当你将两个列表相加时,正确的术语是concat,而不是add. operator。你需要使用Concat。

如果你考虑的是功能性的,它就像这样简单:

>>> from functools import reduce
>>> import operator
>>> list2d = ((1,2,3),(4,5,6), (7,), (8,9))
>>> reduce(operator.concat, list2d)
(1, 2, 3, 4, 5, 6, 7, 8, 9)

你看,reduce尊重序列类型,所以当你提供一个元组时,你得到一个元组。让我们尝试一个列表::

>>> list2d = [[1,2,3],[4,5,6], [7], [8,9]]
>>> reduce(operator.concat, list2d)
[1, 2, 3, 4, 5, 6, 7, 8, 9]

啊哈,你会得到一个列表。

性能如何?

>>> list2d = [[1,2,3],[4,5,6], [7], [8,9]]
>>> %timeit list(itertools.chain.from_iterable(list2d))
1000000 loops, best of 3: 1.36 µs per loop

From_iterable非常快!但是reduce和concat并不是一个可比性。

>>> list2d = ((1,2,3),(4,5,6), (7,), (8,9))
>>> %timeit reduce(operator.concat, list2d)
1000000 loops, best of 3: 492 ns per loop

这个解决方案适用于任意的嵌套深度——而不仅仅是一些(所有?)其他解决方案所限制的“列表的列表”深度:

def flatten(x):
    result = []
    for el in x:
        if hasattr(el, "__iter__") and not isinstance(el, basestring):
            result.extend(flatten(el))
        else:
            result.append(el)
    return result

它是递归,允许任意深度嵌套-直到你达到最大递归深度,当然…